Исполнитель:
Студент группы М-32 Макарченко А.Ю.
Научный руководитель:
Канд. физ-мат. наук, доцент Малинковский М.Т.
Гомель 2007
Содержание
ПЕРЕЧЕНЬ УСЛОВНЫХ ОБОЗНАЧЕНИЙ
ВВЕДЕНИЕ
1. Определение и общие свойства слабо нормальных подгрупп
2. Конечные группы со слабо нормальными подгруппами
ЗАКЛЮЧЕНИЕ
ЛИТЕРАТУРА
Перечень условных обозначений
В работе все рассматриваемые группы предполагаются конечными.
Будем различать знак включения множеств
и знак строгого включения
;
и
- соответственно знаки пересечения и объединения множеств;
- пустое множество;
- множество всех
для которых выполняется условие
;
- множество всех натуральных чисел;
- множество всех простых чисел;
- некоторое множество простых чисел, т.е.
;
- дополнение к
во множестве всех простых чисел; в частности,
;
примарное число - любое число вида
;
Пусть
- группа. Тогда:
- порядок группы
;
- порядок элемента
группы
;
- единичный элемент и единичная подгруппа группы
;
- множество всех простых делителей порядка группы
;
- множество всех различных простых делителей натурального числа
;
-группа - группа
, для которой
;
-группа - группа
, для которой
;
- подгруппа Фраттини группы
, т.е. пересечение всех максимальных подгрупп группы
;
- подгруппа Фиттинга группы
, т.е. произведение всех нормальных нильпотентных подгрупп группы
;
- наибольшая нормальная
-нильпотентная подгруппа группы
;
- коммутант группы
, т.е. подгруппа, порожденная коммутаторами всех элементов группы
;
-
-ый коммутант группы
;
- наибольшая нормальная
-подгруппа группы
;
-
-холловская подгруппа группы
;
- силовская
-подгруппа группы
;
- дополнение к силовской
-подгруппе в группе
, т.е.
-холловская подгруппа группы
;
- группа всех автоморфизмов группы
;
-
является подгруппой группы
;
-
является собственной подгруппой группы
;
-
является максимальной подгруппой группы
;
нетривиальная подгруппа - неединичная собственная подгруппа;
-
является нормальной подгруппой группы
;
- подгруппа
характеристична в группе
, т.е.
для любого автоморфизма
;
- индекс подгруппы
в группе
;
;
- централизатор подгруппы
в группе
;
- нормализатор подгруппы
в группе
;
- центр группы
;
- циклическая группа порядка
;
- ядро подгруппы
в группе
, т.е. пересечение всех подгрупп, сопряжённых с
в
.
Если
и
- подгруппы группы
, то:
- прямое произведение подгрупп
и
;
- полупрямое произведение нормальной подгруппы
и подгруппы
;
-
и
изоморфны.
Группа
называется:
примарной, если
;
бипримарной, если
.
Скобки
применяются для обозначения подгрупп, порождённых некоторым множеством элементов или подгрупп.
- подгруппа, порожденная всеми
, для которых выполняется
.
, где
.
Группу
называют:
-замкнутой, если силовская
-подгруппа группы
нормальна в
;
-нильпотентной, если
-холловская подгруппа группы
нормальна в
;
-разрешимой, если существует нормальный ряд, факторы которого либо
-группы, либо
-группы;
-сверхразрешимой, если каждый ее главный фактор является либо
-группой, либо циклической группой;
нильпотентной, если все ее силовские подгруппы нормальны;
метанильпотентной, если существует нормальная нильпотентная подгруппа
группы
такая, что
нильпотентна.
разрешимой, если существует номер
такой, что
;
сверхразрешимой, если она обладает главным рядом, все индексы которого являются простыми числами.
Группа Шмидта - это конечная ненильпотентная группа, все собственные группы которой нильпотентны.
Добавлением к подгруппе
группы
называется такая подгруппа
из
, что
.
Минимальная нормальная подгруппа группы
- неединичная нормальная подгруппа группы
, не содержащая собственных неединичных нормальных подгрупп группы
.
Цоколь группы
- произведение всех минимальных нормальных подгрупп группы
.
- цоколь группы
.
Классы групп, т.е. совокупности групп, замкнутые относительно изоморфизмов, обозначаются прописными готическими буквами. Также обозначаются формации, т.е. классы групп, замкнутые относительно факторгрупп и подпрямых произведений. За некоторыми классами закреплены стандартные обозначения:
- класс всех групп;
- класс всех абелевых групп;
- класс всех нильпотентных групп;
- класс всех разрешимых групп;
- класс всех
-групп;
- класс всех сверхразрешимых групп;
Формации - это классы конечных групп, замкнутые относительно взятия гомоморфных образов и конечных подпрямых произведений.
Пусть
- некоторый класс групп и
- группа, тогда:
-
-корадикал группы
, т.е. пересечение всех тех нормальных подгрупп
из
, для которых
. Если
- формация, то
является наименьшей нормальной подгруппой группы
, факторгруппа по которой принадлежит
. Если
- формация всех сверхразрешимых групп, то
называется сверхразрешимым корадикалом группы
.
Формация
называется насыщенной, если всегда из
следует, что и
.
Класс групп
называется наследственным или замкнутым относительно подгрупп, если из того, что
следует, что и каждая подгруппа группы
также принадлежит
.
Произведение формаций
и
состоит из всех групп
, для которых
, т.е.
.
Пусть
- некоторая непустая формация. Максимальная подгруппа
группы
называется
-абнормальной, если
.
Подгруппы
и
группы
называются перестановочными, если
.
Пусть
- максимальная подгруппа группы
. Нормальным индексом подгруппы
называют порядок главного фактора
, где
и
, и обозначают символом
.
Пусть
- группа и
- различные простые делители порядка группы
. Тогда группа
называется дисперсивной по Оре, если существуют подгруппы
, такие что
- силовская
-подгруппа группы
и подгруппа
нормальна в
для всех
.
Введение
В своей работе Оре рассмотрел два обобщения нормальности, оба из которых вызывают неослабевающий интерес у исследователей и в наши дни. Во-первых, в работе были впервые введены в математическую практику квазинормальные подгруппы: следуя, мы говорим, что подгруппа
группы
квазинормальна в
, если
перестановочна с любой подгруппой из
(т.е.
для всех подгрупп
из
). Оказалось, что квазинормальные подгруппы обладают рядом интересных свойств и что фактически они мало отличаются от нормальных подгрупп. Отметим, в частности, что согласно, для любой квазинормальной подгруппы
имеет место
, а согласно, квазинормальные подгруппы - это в точности те субнормальные подгруппы группы
, которые являются модулярными элементами в решетке всех подгрупп группы
.
Понятно, что если подгруппа
группы
нормальна в
, то в
всегда найдется такая подгруппа
, что выполнено следующее условие:

Таким образом, условие
является еще одним обобщением нормальности. Такая идея также была впервые рассмотрена в работе, где в частности, было доказано, что: Группа
является разрешимой тогда и только тогда, когда все ее максимальные подгруппы удовлетворяют условию
. В дальнейшем, в работе подгруппы, удовлетворяющие условию
были названы
-нормальными. В этой же работе была построена красивая теория
-нормальных подгрупп и даны некоторые ее приложения в вопросах классификации групп с заданными системами подгрупп.
В данной диссертационной работе мы анализируем следующее понятие, которое одновременно обобщает как условие квазинормальности, так и условие
-нормальности для подгрупп.
Определение. Подгруппа
группы
называется слабо квазинормальной в
подгруппой, если существует такая подгруппа
группы
, что
и
,
- квазинормальные в
подгруппы.
Следующий простой пример показывает, что в общем случае слабо квазинормальная подгруппа не является ни квазинормальной, ни
-нормальной.
Пример. Пусть
,
где
. И пусть
,
. Тогда
и
. Пусть
- группа простого порядка 3 и
, где
- база регулярного сплетения
. Поскольку
,
и
- модулярная группа, то
квазинормальна в
и поэтому подгруппа
слабо квазинормальна в
. Значит, подгруппа
является слабо квазинормальной в
, но не квазинормальной и не
-нормальной в
.
В последние годы значительно возрос интерес к квазинормальным и
-нормальным подгруппам, что говорит о несомненной актуальности данного направления. Следует отметить, что многими авторами (Асаад, Бакли, Баллестер-Болинше, Ванг, Вей, Ли, Педра-Агуэла, Рамадан, А.Н. Скиба, Сринивазан и др.) получено большое число теорем связанных с изучением групп, те или иные выделенные системы подгрупп которых
-нормальны или квазинормальны. Не смотря на тот факт, что квазинормальность и
-нормальность являются вполне различными обобщениями нормальности, в настоящее время получено много аналогичных результатов независимо для квазинормальных и
-нормальных подгрупп. В данной работе такой параллелизм устраняется на основе введенного выше понятия слабой квазинормальности.
Таким образом, задача изучения групп с заданной системой слабо квазинормальных подгрупп вполне актуальна, ее реализации посвящена данная работа.