Конечные группы со слабо нормальными подгруппами




 

В данном разделе мы докажем некоторые критерии разрешимых, метанильпотентных, дисперсивных по Оре и сверхразрешимых групп в терминах слабо нормальных подгрупп.

Следующая теорема доказывается аналогично теореме 3.5.1.

Группа разрешима тогда и только тогда, когда , где , - подгруппы группы такие, что каждая максимальная подгруппа из и каждая максимальная подгруппа из слабо нормальны в .

Пусть - группа тогда следующие утверждения эквивалентны:

(1) - разрешима;

(2) , где , - подгруппы группы такие, что каждая максимальная подгруппа из и каждая максимальная подгруппа из слабо квазинормальны в ;

(3) , где , - подгруппы группы такие, что каждая максимальная подгруппа из и каждая максимальная подгруппа из слабо нормальны в .

Группа метанильпотентна тогда и только тогда, когда , где подгруппа -квазинормальна в , - нильпотентна и каждая силовская подгруппа из слабо нормальна в .

Доказательство. Допустим, что , где - -квазинормальна в , - нильпотентна и каждая силовская подгруппа из слабо нормальна в . Покажем, что группа метанильпотентна. Предположим, что это не верно и пусть - контрпример минимального порядка. Тогда справедливы следующие утверждения.

(1) не является нильпотентной группой.

Предположим, что нильпотентна. Так как ввиду леммы (3), субнормальна, то содержится в некоторой нильпотентной нормальной подгруппе из по лемме (2). Тогда

 

 

нильпотентна и поэтому метанильпотентна. Полученное противоречие с выбором группы доказывает (1).

 


(2) .

 

Допустим, что . Тогда ввиду леммы, нильпотентна, что противоречит (1). Значит, мы имеем (2).

(3) Если - абелева минимальная нормальная подгруппа группы , содержащаяся в , то метанильпотентна.

Пусть - -группа и - силовская -подгруппа в . Тогда и поэтому по лемме каждая силовская подгруппа из слабо нормальна в . Поскольку по лемме, -квазинормальна в ,

 

 

то условия теоремы справедливы для . Так как , то ввиду выбора группы , метанильпотентна.

(4) Условия теоремы справедливы для (это проямо следует из леммы).

(5) разрешима.

Если , то метанильпотентна по (4)и выбору группы . Пусть теперь . Предположим, что для некоторой силовской подгруппы из мы имеем . Тогда ввиду (3), разрешима. Пусть теперь для каждой силовской подгруппы группы . Тогда по условию каждая силовская подгруппа из имеет квазинормальной дополнение в и поэтому нильпотентна. Полученное противоречие в выбором группы доказывает (5).

(6) В группе имеется в точности одна минимальная нормальная подгруппа , содержащаяся в .

Пусть - минимальная нормальная подгруппа группы , содержащаяся в . Тогда абелева согласно (5), и поэтому ввиду (3), метанильпотентна. Так как класс всех метанильпотентных групп. Кроме того, так как класс всех метанильпотентных групп является насыщенной формацией (см.), то - единственная минимальная нормальная подгруппа группы , содержащаяся в .

(7) Если -группа, то каждая силовская -подгруппа из , где , имеет квазинормальное дополнение в .

Пусть - силовская -подгруппа в , где . Тогда ввиду (6), . По условию, слабо нормальна в и поэтому имеет квазинормальную подгруппу , такую что и

 

 

Заключительное противоречие.

Пусть - силовская -подгруппа в и . Тогда

 

 

По условию имеет квазинормальную подгруппу , такую что и

 

 

Тогда

 

 

и поэтому - дополнение для в , которое является квазинормальной в подгруппой. Если - -подгруппа из , где , то ввиду (7), имеет дополнение в , которое является квазинормальной подгруппой (см. доказательство утверждения (3) леммы). Тогда по лемме, нильпотентна и поэтому метанильпотентна. Полученное противоречие доказывает метанильпотентность группы .

Обратно, предположим, что метанильпотентна. Покажем, что каждая силовская подгруппа из слабо нормальна в . Предположим, что это не верно и пусть - контрпример минимального порядка. Тогда имеет силовскую подгруппу , которая не является слабо нормальной в . Пусть - произвольная минимальная нормальная подгруппа в и - подгруппа Фиттинга группы . Предположим, что . Тогда слабо нормальна в и поэтому по лемме (1), слабо нормальна в , противоречие. Значит, и поэтому

 

 

Так как по условию метанильпотентна и - силовская подгруппа в , то имеет нормальное дополнение в . Но поскольку и - -группы, то - нормальное дополнение для в . Следовательно, слабо нормальна в . Полученное противоречие показывает, что каждая силовская подгруппа из слабо нормальна в .

Пусть - группа тогда следующие утверждения эквивалентны:

(1) - метанильпотентна;

(2) , где подгруппа субнормальна в , - абелева холлова подгруппа в и каждая силовская подгруппа из слабо квазинормальна в ;

(3) , где подгруппа -квазинормальна в , - нильпотентна и каждая силовская подгруппа из слабо нормальна в .

Пусть , где подгруппа -квазинормальна в , нильпотентна. Предположим, что любая максимальная подгруппа каждой нециклической подгруппы из слабо нормальна в . Тогда сверхразрешима.

Доказательство. Предположим, что эта теорема не верна и пусть - контрпример минимального порядка. Тогда:

(1) Каждая собственная подгруппа группы , содержащая , сверхразрешима.

Пусть , где . Тогда

 

 

где нильпотентна и -квазинормальна в . Так как по лемме (2), любая максимальная подгруппа каждой нециклической силовской подгруппы из слабо нормальна в и , то по выбору группы мы имеем (1).

(2) Пусть - неединичная нормальная подгруппа в . Предположим, что -группа. Допустим, что содержит силовскую -подгруппу из , или циклична, или . Тогда сверхразрешима.

Если , то

 

 

нильпотентна. Пусть теперь . Так как , то нам только нужно показать, что условия теоремы справедливы для . Ясно, что

 

 

где -квазинормальна в и нильпотентна. Пусть силовская -подгруппа из и - произвольная максимальная подгруппа в . Пусть - силовская -подгруппа из , такая что . Ясно, что - силовская -подгруппа группы . Значит, для некоторой силовской -подгруппы из . Предположим, что не является циклической подгруппой. Тогда не циклична. Покажем, что слабо нормальна в . Если , то это прямо следует из леммы. Допустим, что либо силовская -подгруппа из циклическая, либо . Тогда . Покажем, что - максимальная в подгруппа. Так как и , то

 

 

Предположим, что для некоторой подгруппы из мы имеем

 

 

где

 

 

Тогда

 

 

Так как - максимальная в подгруппа, то либо , либо . Если , то

 

 

что противоречит выбору подгруппы . Значит, и поэтому мы имеем


 

противоречие. Следовательно, - максимальная в подгруппа и по условию слабо нормальна в . Значит,

 

 

слабо нормальна в . Следовательно, условия теоремы справедливы для .

(3) и сверхразрешима.

По выбору группы , и поэтому сверхразрешима согласно (1).

(4) - разрешимая группа.

По условию -квазинормальна в и поэтому по лемме (3), содержится в некоторой разрешимой нормальной подгруппе группы . Так как группа нильпотентна, то разрешима.

(5) Если - простое число и , то .

Пусть . Тогда ввиду (2), сверхразрешима. Если - множество всех простых делителей порядка группы , то по лемме (1), , где - нормальная -подгруппа группы и поэтому

 

 

сверхразрешима. Но тогда

 

 

сверхразрешима. Полученное противоречие с выбором группы доказывает (5).


(6) .

 

Допустим, что . Тогда по лемме, нильпотентна. Пусть - силовская -подгруппа из . Так как ввиду леммы (3) субнормальна в , то субнормальна в . Тогда , согласно лемме (1). Но тогда ввиду (2), сверхразершима и поэтому , по выбору группы . Так как и

 

 

нильпотентно, то - силовская -подгруппа из . Пусть - холлова -подгруппа из и . По лемме, нормальна в и поэтому . Допустим, что для некоторого простого делителя порядка , отличного от , мы имеем . Тогда нормальна в и поэтому - нормальная подгруппа в , поскольку . Но тогда , что противоречит (5). Следовательно, и поэтому . Согласно теореме, сверхразрешима и поэтому - абелева группа, экспонента которой делит , согласно леммы. Но тогда - абелева группа экспоненты, делящей и поэтому сверхразрешима, согласно леммы. Полученное противоречие с выбором группы доказывает (6).

Заключительное противоречие.

Пусть - минимальная нормальная подгруппа в , содержащаяся в . Пусть - -группа и - силовская -подгруппа группы . В силу (2), сверхразрешима и поэтому - единственная минимальная нормальная подгруппа группы , содержащаяся в . Ясно, что и . Значит, по лемме для некоторой максимальной подгруппы из мы имеем . Ясно, что и поэтому по условию имеет дополнение в , которое является квазинормальной в подгруппой. Тогда

 

 

и поэтому . Но тогда

 

 

и поэтому, ввиду минимальности , . Ввиду (5), имеет холлову -подгруппу. Так как в силу леммы (3), субнормальна в , то каждая холлова -подгруппа группы содержится в . Следовательно, - -группа. Отсюда следует, что

 

 

сверхразрешима. Полученное противоречие завершает доказательство теоремы.

Группа дисперсивна по Оре тогда и только тогда, когда , где подгруппа квазинормальна в , дисперсивна по Оре и каждая максимальная подгруппа любой нециклической силовской подгруппы группы слабо нормальна в .

Доказательство. Пусть , где подгруппа квазинормальна в , дисперсивна по Оре и каждая максимальная подгруппа любой нециклической силовской подгруппы группы слабо нормальна в . Покажем, что группа дисперсивна по Оре. Предположим, что это не верно и пусть - контрпример минимального порядка. Тогда:

(1) Каждая собственная подгруппа группы , содержащая , дисперсивна по Оре.

Пусть , где . Тогда

 

где дисперсивна по Оре и квазинормальна в . Так как по лемме (2) любая максимальная подгруппа каждой нециклической силовской подгруппы из слабо нормальна в и , то по выбору группы мы имеем (1).

(2) Пусть - неединичная нормальная подгруппа в , являющаяся -группа для некоторого простого числа . Допустим, что либо содержит силовскую -подгруппу из , либо циклична, либо . Тогда дисперсивна по Оре.

Если , то

 

 

дисперсивна по Оре. Пусть теперь . Так как , то нам лишь нужно показать, что условия теоремы справедливы для . Ясно, что

 

 

где квазинормальна в и дисперсивна по Оре. Пусть силовская -подгруппа из и - произвольная максимальная подгруппа в . Пусть - силовская -подгруппа из , такая что . Ясно, что - силовская -подгруппа группы . Значит, для некоторой силовской -подгруппы из . Предположим, что не является циклической подгруппой. Тогда не циклична. Покажем, что слабо нормальна в . Если , то это прямо следует из леммы. Допустим, что либо силовская -подгруппа из циклическая, либо . Тогда . Покажем, что - максимальная в подгруппа. Так как и , то

 

Предположим, что для некоторой подгруппы из мы имеем

 

 

где

 

 

Тогда

 

 

Так как - максимальная в подгруппа, то либо , либо . Если , то , что противоречит выбору подгруппы . Значит, и поэтому мы имеем

 

 

противоречие. Следовательно, - максимальная в подгруппа и по условию слабо нормальна в . Значит,

 

 

слабо нормальна в . Следовательно, условия теоремы справедливы для .

(3) Если - простое число и , то .

Пусть

 

Тогда ввиду (2), дисперсивна по Оре. С другой стороны, если - множество всех простых делителей , то ввиду леммы (3) и леммы, , где - нормальная -подгруппа в



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-07-29 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: