Cмещение равновесия. Принцип Ле Шателье.




Хим равнов любой системы устанав при опред значениях параметров, которые его характеризуют: концентрации реагирующих веществ, температуры, давления (для газов). При изменении любого из этих параметров скорости прямой и обратной реакций изменяются неодинаково, и химическое равновесие нарушается, вследствии чего меняются концентрации компонентов системы. В результате преимущественного протекания реакции в одном из возможных направлений со временем в системе устанавливается другое состояние равновесия, которое характеризуется новыми равновесными концентрациями. Переход системы из одного равновесного состояния в другое называется смещением химического равновесия. Направление смещения химического равновесия определяется принципом Ле Шателье: если на систему, находящуюся в равновесии, оказать внешнее воздействие, то равновесие сместится в том направлении, которое ослабляет эффект внешнего воздействия. Рассмотрим влияние каждого из трех параметров на смещение химического равновесия. 1) Если внешнее воздействие на систему проявляется в уменьшении концентрации одного из веществ, участвующих в реакции, равновесие смещается в сторону его образования (увеличения концентрации). Повышение концентрации одного из веществ смещается равновесие в сторону его расхода (уменьшения концентрации). Так, увеличение концентрации исходных веществ смещает равновесие в сторону образования продуктов реакции, увеличение концентрации продуктов реакции смещает равновесие в сторону образования исходных веществ. 2) Влияние температуры на смещение равновесия определяется знаком и величиной энтальпии реакции DН: чем больше отличается DН от нуля, тем значительнее смещение равновесия при одном и том же изменении температуры. При повышении температуры равновесие смещается в направлении протекания эндотермической реакции. При понижении температуры равновесие смещается в направлении протекания экзотермической реакции. 3) Изменение давления оказывает влияние на равновесие в том случае, если в реакции участвует хотя бы одно газообразное вещество и число молей исходных газообразных веществ и газообразных продуктов реакции не одинаково.При увеличении давления равновесие смещается в сторону образования веществ с меньшим объемом (меньшим числом молей газов). При понижении давления равновесие смещается в сторону образования веществ с большим объемом (большим числом молей газов). Если протекание реакции не сопровождается изменением объема, то изменение давления не влияет на состояние равновесия. 4) катализатор не влияет на смещение равновесия. Одинаково ускоряет прямую и обратную реакции и позволяет достигать в более короткий срок.

26. Дисперсные системы, их классификация. Суспензии, эмульсии. Дисперсные системы – системы, в кот частицы одного мелко раздробленного вещ-ва (дисперсной фазы) равномерно распределены между частями другого вещ-ва (дисперсной среды). По агрегатному состоянию фазы и среды различают следующие системы: ГГ-(воздух), ГЖ-пена(пеногазиров вода), ГТтв.пена(пенопласт,пемза,шлак), ТТ-тв золь(сплавы, горные породы), ТГ-(пыль, дым), ТЖ-суспензии,золь,гель(мел в воде,краски,пасты), Жг-аэрозоль(туман,облако) Жж-эмельсия(молоко,нефть),Жт-тв.эмельсия(вода в сливочном масле, влажный грунт). В зав-ти от размеров частиц дисперсные фазы различают грубодисперсные системы – взвеси (более 100нм – почвы, эмульсии, порошки, пены); тонкодисперсные системы – коллоидные (1-100 нм – золь, гель кремн кислоты, р-р желатина, р-р серы); молекулярно и ионно дисперсные – истинные растворы (менее 1 нм – р-ры H2SO4,NaOH,CuSO4)

28.Растворы. Гидратная теория растворов Д.И.Менделеева. сольваты и гидраты. Тепловые явления при растворении. Раствор – гомогенная однофазная система переменного состава, состоящая из двух или более компонентов. Раствор состоит из растворителя и растворенного вещества. Раствор-ое вещ-во распределяется между молекулами растворителя в виде молекул или ионов. Растворы могут быть жидкими – морская вода, твердыми – сплавы, газообразными – воздух. Процесс растворения – физико-химический процесс, сопров выделением или поглощением тепла, а иногда и изменением объема. Химическую теорию растворов создал Менделеев. Менделеев считал, что эти явления указывают на хим взаимод между растворяющимся веществом и растворителем, этот процесс называется сольватацией, а полученные вещества-сольваты. С водой процесс называется – гидротацией, а получившиеся вещества- гидраты. проиллюстрируем это на примере растворения NaCl в воде. Между ионами натрия и хлора в кристалле существует ионная связь. При погружении кристалла NaCl в воду ионы поверзн слоя взаимод с полярными молекулами воды – диполями. Возникает иондипольное взаимодействие, которое сильнее чем ионная связь и разрывает связи в кристалле. Гидратированные ионы отрываются от кристалла, полностью окруж-ся диполями воды. Постепенно весь кристалл распадается на отдельные гидратные ионы, образую с водой гомогенную систему – истинный раствор. Число молекул воды, связанных с ионами раствор вещ-ва, зависит от его природы и размеров. Гидротир ионы и молекулы иногда настолько прочны, что при выделение раствор вещества из растворителя (выпариванием) выпадают кристаллы содержащие молекулы воды, эти вещества называют кристаллогидраты. при растворении происходит 1)разрушение хим и межмолек связей в растворителях – эндотермич процесс 2)образование сольватов сопровожд выделением энергии – экзотерм процесс 3)распределение сольватов в растворителе, связанное с диффузией – эндотермич процесс. Суммарный тепловой эффект процесс ÑH может быть <>0. При растворении газов и большенства жидкостей энергия, затраченная на разрыв межмолек связей невелика и процесс растворения экзотермический. При раствор уксусной кислоты теплота поглощается, т.к. между молекулами сущ-ет водородная связь. При раствор тв вещ-в с прочной кристал структурой разрушение решетки требует значительной затраты энергии и процесс эндотермический (NaNO3, NH4NO3), но теплота выделяется при растворении (NaOH, KOH).

29. Растворимость газов, жидкостей, кристаллов в жидкостях. Влияние температуры, давления, природы компонентов на растворимость. Растворимость – способность вещ-ва растворяться в том или ином растворителе. Растворимость – процесс обратимый. В зависимости от условий происходит процесс растворения или веделения из раствора раствор вещ-ва (кристаллизация). Растворение кристалла в жидкости. Когда вносят кристалл в жидкость от его поверх-ти отрыв-ся отдел молекулы, кот благодаря диффузии распред по всему объему растворителя. Отделение молекул от поверхности тв тела выз-ся их собствен колебат движением и притяжением со стороны молекул раств-ля. Но одновременно происходит и обратный процесс – кристаллизация. Наступает такой момент, когда скорость растворения равна скорости кристаллизации. Тогда устанав-ся динамич равновесие. Мера растворимости тв вещ-ва в жидкости – это концентрация насыщ раствора при данной темп-ре. Насыщ р-р находится в равновесии с твердой фазой раствор вещ-ва и содержит максим возможное при данных условиях кол-во этого вещ-ва. Неначыщенный раствор содержит меньше раств вещ-ва чем насыщ. Перенасыщ раствор содержит больше раств вещ-ва, чем насыщ раствор. Получают медленным охлаждением насыщ раствора при более высокой температуре. Перен. Р-ры неустойчивы и при встряхивании идет кристаллизация и выведение из раствора избытка раств вещ-ва. Раствор большинства твердых тел сопров поглощением теплоты. При раствор тв тел в жидкостях объем системы обычно изменяется незначительно. Жидкости также могут растворяться в жидкостях. Некоторые из них неограниченно растворимы одна в другой, т.е. смешиваются друг с другом в любых пропорциях. Растворение газов в воде представляет собой экзотермический процесс. Однако растворение газов в органических жидкостях нередко сопровождается поглощением теплоты. Растворимость зависит от природы компонентов, температуры и давления. 1 )природа – наиб раст-ть достигается, когда раств вещ-во имеет с раствор-ем подобное строение молекул. хорошо растворимы в воде спирт, NaOH, KOH, NH3, малорастворимы - гипс, N2, O2. 2) температура – с повышением температуры чаще всего раств-ть тв и жидких вещ-в увеличивается (если процесс эндотермический), газообразных уменьшается, т. к. экзотермич. Раств-ть тв вещ-в с повышением тем-ры мен-ся различно. 3) давление – с ростом давления раст-ть газов в жидкостях увелич-ся, т.к. уменш объем. Закон Генри – при пост давлении раст-ть газа пропорц давлению над раствором. S=kp. Изменение давления не влияет на раств-ть жидкостей, тв вещ-в, т.к. при раств-ти не происходит заметного изменения объема.

27 Способы выражения концентрации растворов. Состав раствора может выражаться разными способами – как с помощью безразмерных единиц (долей или процентов), так и через размерные величины – концентрации. 1)массовая доля – отношение массы растворенного вещ-ва к массее раствора; процентная концентрация – показывает число гр раств вещ-ва в 100 гр раствора. 2)молярная доля – отношение кол-ва раствор вещ-ва (или растворителя) к сумме количеств всех вещ-в, составляющих раствор. 3)молярная концентрация или молярность – отношение кол-ва раствор вещ-ва к объему раствора (См или М, моль/л), показывает число молей раствор вещ-ва в единице раствора. 4)моляльная концентрация или моляльность – отношение кол-ва раствор вещ-ва к массе растворителя (m, моль/кг), не измен при изменении температуры. 5)эквивалентная или нормальная концентрация – отношение числа эквивалентов раствор вещ-ва к объему раствора (Сн или н моль/л). объемы растворов реаг вещ-в обратно пропорциональны их нормальностям.

 

32 35 Растворы элэктролитов. Теория электролитической диссоциации. Амфотерные электролиты Все растворы делятся на электролиты и неэлектролиты. Электролиты – вещ-ва, водные растворы и расплавы кот проводят эл ток. К ним относятся почти все соли, кислоты, основания – вещ-ва с ионной или сильной полярной ковалентной связью. Электролитич диссоциация – процесс распада молекул электролита на ионы под действием молекул растворителя. Сущ-ет теория э/д для водных раст-ов слабых электролитов, кот была сформулирована Арениусом в 1887г. Положения: 1) электролиты в растворе распадаются (диссоциируют) на полож (катионы) и отриц (анионы) заряженные ионы, 2) ионы обладают другим запасом энергии чем молекулы и имеют др сво-ва, 3) ионы в раст-ре наход-ся в хаотич движении, под действием эл поля полож ионы движ к катоду, а отриц к аноду, 4) диссоциация – обрат процесс, одноврем с ним идет соединение ионов в молекулы (молеризация). Механизм э/д. При раствор вещ-ва диполи воды концентрируются около (+) и (-) ионов вещ-ва. возникает иондипольное взаимодействие, ионы отрываются от кристалла и в гидратированном виде переходят в раствор, идет диссоциация. Процесс диссоциации полярных молекул осущ-ся с переходом полярной структуры в ионную и послед-им образованием гидратированных ионов. Кислоты – эл-ты, при дис-ии кот в качестве катионов образ-ся только ионы Н+. Бескислородные и кислородсодержашие. Многоосновные могут дис-ть ступенчато. Н+обуслав кислую среду. Основания – эл-ты, при дис-ии кот в кач-ве анионов образ-ся только гидроксид-ионы ОН-. Обуславл щелочную среду, изменение окраски индикаторов и мыльность наощупь. Может проходить ступенчатая дис-ия. Соли - средние, кислые, основные, двойные. Диссоциация кислот, оснований и солей в воде.

Средние соли диссоциируют нацело: Na2SO4«2Na++ SO42-.

Многоосновные кислоты и многокислотные основания диссоциируют ступенчато:

H3PO4 «H+ + H2PO4- K1= 7.11×10-3

H2PO4- «H+ + HPO42- K2 = 6.34×10-8

HPO42- «H+ + PO43- K3 = 4.4×10-13

Очевидно, что константы диссоциации по различным степеням сильно отличаются друг от друга K1>>K2>>K3. Отсюда существование кислых и основных солей.

Амфотерные электролиты – соединения двойст-ого хар-ра. В кислой среде проявл сво-ва основания и диссо-т с отщеплением ОН-. В щелочной среде проявл сво-ва кислот и дис-ют с отщепл катионов Н+. Амфотерность объясн малым различием прочности связей R-O и OН.

33. Сильные и слабые электролиты. Степень, константа диссоциации слабых электролитов. Закон разбавления Оствальда. Э лектролитич диссоциация – процесс распада молекул электролита на ионы под действием молекул растворителя. Но лишь часть электролита диссоциирует в растворе на ионы. Сущ-ет понятие степени диссоциации a. a - отношение числа молекул, распавшихся в данном растворе на ионы, к общему числу молекул в растворе. выражается в долях единиц или процентах. Если a=1 – полная диссоц-я, сильный электролит, если a=0 – нет дис-ии, неэлектролит. a повыш с ростом температуры и разбавлением раствора. По степени ди-ии растворы делятся на сильные и слабые электролиты. Сильные эл-ты – практически полностью дис-ют на ионы. К ним относятся неорганич кислоты HCl, HBr, H2SO4, HMnO4, основания щелочных и щелочнозем металлов, почти все соли. Вследствии полной дис-ии сильных эл-ов конц-я ионов в растворе высокая и возникает притяжение между ионами. Каждый ион окр-ся слоем противоположнозаряж ионов в виде ионного облака – ионной атмосферы, что уменьшает подвижность ионов. Эл-ты прояв себя как будто их конц-я меньше действительной. В рез-те при опред a меньше 100% и называется кажущейся степенью диссоциации. aэкспер>30% - сильный эл-т (табличное значение). Для учета суммарных влияний межионных и межмолекулярных взаимод-ий в растворе сильного эл-та используют понятие, называемое активностью a=Cf. A – реальная конц-я ионов, C- истинная конц-я, f- эффект активности, кот учитывает все виды взаимод-я частей в растворе. Опред-ся опытным путем, f<1. Слаб электролиты незначит дис-ют на ионы, a<3%. К слабым электролитам относится большинство органических кислот, а из важнейших неорганических соединений к ним принадлежат Н2СО3, Н2S, НСN, Н2SiО3 и NН4ОН, основания нещелочных и нещелочноземельных металло Mg(OH)2, Cu(OH)2, Al(OH)3, соли HgCl2, CoCl2, вода.

34. Закон разбавления Оствальда. Слабые электролиты хар-ся константой диссоциации, кот равна константе равновесия, установившегося в рез-те дис-ии слабого электролита. НСN=Н++СN- Кр=[Н+][СN-]/[НСN]=Кд. Кд зависит от температуры и природы эл-та и не зависит от конц-ии. С повышением темп-ры Кд понижается. Многоосновные слабые кислоты и многокислотные основания дис-ют ступенчато. Причем Кд по каждой последней ступени на несколько порядков ниже, чем по предыдущей. Между a и Кд сущ-ет зависимость, кот носит название закона разбавления Оствальда. Примем исход молярную конц-ю за С, а степень диссоциации в данном растворе за a. Тогда концентрация каждого из ионов будет Сa, а концентрация недиссоциированных молекул С(1-a).Тогда уравнение константы диссоциации принимает вид: К=(Сa)2/С(1-a) или К=Сa2 /(1-a). Оно даёт возможность вычислять степень диссоциации при различных концентрациях электролита, если известна его константа диссоциации. Пользуясь этим уравнением, можно также вычислить константу диссоциации электролита, зная его степень диссоциации при той или иной концентрации. для очень слабых эл-ов a гораздо меньше 1. След-но ее значением можно пренебречь. Кд=(Ca)2 . Степень диссоциации увелич с разбавлением раствора, пониж конц-ии и увелич Кд.

37 Реакции обмена в растворах электролитов и условия их протекания. Электролиты – вещ-ва, водные растворы и расплавы кот проводят эл ток. К ним относятся почти все соли, кислоты, основания – вещ-ва с ионной или сильно полярной ковалентной связью. В растворах электролитов могут протекать реакции обмена. Это реакции, вызванные взаимодействием между ионами растворенных вещ-в. протекают с высокими скоростями, т.к. реагенты находятся в антивирусном состоянии. Обязательным условием протекания реакции ионного обмена является смещение химического равновесия в сторону образования малорастворимых веществ (осадков), газов, слабых электролитов. При составлении ионно-молекулярных уравнений сильные эл-ты зап-ся в виде ионов, слабые – осадки, газы – в виде молекул. Для составления этих уравнений надо знать какие соли растворимы в воде и какие практически нерастворимы.

Взаим между кислотами и осн в результ кот обр-ся соль и вода называется реакц нетрализации. нейтр доходит до конца когда единств слабым электролитом в сист явл-ся вода.Взаимная нейтр кислот и осн различ-ся по силе до конца не протекает в силу прот-я обр реакции – гидролиза обр-ся соли.

36. Ионное произведение воды. Водородный показатель. рН-среды. чистая вода очень плохо проводит эл ток, т.е. вода – слабый электролит, незначительно дис-ет на ионы. Кд=[Н+][ОН-]/[Н2О]=1,8*10-16). Константа диссоциации воды очень мала, т.к. доля молекул, участвую щих в дис-ии очень маленькая, поэтому конц-я недис-их молекул воды практически равна молярной концентрации молекул в жидкой воде (1000/18=55,5 моль/л). Для воды и разбавленных водных растворов при неизменной температуре произведение концентраций ионов водорода и гидроксид-ионов есть величина постоянная. Эта постоянная величина называется ионным произведением воды.Численное значение её нетрудно получить, подставив в последнее уравнение концентрации ионов водорода и гидроксид - ионов. В чистой воде при 220С [Н+]*[ОН-]=Кд*Cm=1.8*10-16*55.5=10-14 КW=10-14 – ионное произведение воды. Растворы, в которых концентрации ионов водорода и гидроксид - ионов одинаковы, называются нейтральными (10-7моль/л). В кислых растворах больше концентрация ионов водорода, в щелочных - концентрация гидроксид -ионов.Но какова бы ни была реакция раствора, произведение концентрации ионов водорода и гидроксид-ионов остаётся постоянным. пользоваться значениями концентрации с отриц степенями неудобно, поэтому на практике для хар-ки среды применяют водородный показатель рН. Вместо концентрации ионов водорода указывают её десятичный логарифм, взятый с обратным знаком рН= -lg[Н+] В нейтральном растворе рН=7. В кислых растворах рН<7, и тем меньше, чем кислее раствор. Наоборот, в щелочных растворах рН>7, и тем больше, чем больше щёлочность раствора. Для измерения рН существуют различные методы. Приближенно реакцию раствора можно определить с помощью специальных реактивов, называемых индикаторами, окраска которых меняется в зависимости от концентрации ионов водорода. рН метр или универсальный индикатор. Лакмус: фиолет, красный, синий; метилорандж: оранж, красный, желтый; ф/ф: бесцветный, бесцветный, малыновый.

38. Гидролиз солей. Различные случаи гидролиза. Гидролиз (в переводе разложение водой) – процесс взаимод ионов соли с ионами воды, в рез-те кот образуется слабый электролит, что сопровождается связыванием одного из ионов воды, смещением равновесия диссоциации воды и изменением рН раствора. Различают гидролиз по катиону и аниону. 1)Если соль образована катионом слабого основания и анионом сильной кислоты, то гидролиз идет по катиону c образованием ионов Н+. Если катион многозарядный, то гидролиз протекает по первой стадии с образованием соли. CuCl2+HOH«CuOHCl+HCl, CuOHCl+HOH«Cu(OH)2. Накопление ионов Н+ приводит к уменьшению ионов ОН-. Кислая реакция среды. 2) Если соль образована катионом сильного основания и анионом слабой кислоты, то гидролиз идет по аниону, приводит к связыванию ионов Н+, накапление ОН-, среда реакции нщелочная. Если анион соли многозарядный, то гидролиз идет по первой стадии с образов кислой соли. Na2CO3+HOH«NaHCO3+NaOH, NaHCO3+HOH«H2CO3+NaOH. 3)Если соль образована катионом слабого основания и анионом слабой кислоты, то гидролиз идет по катиону и аниону. Реакция среды зависит от относит силы образ-ся кислоты и основания. NH4CN+HOH«NH4OH+HCN. 4)Если соль образована слабым многокислотным основанием и слабой многоосновной кислотой, то гидролиз идет до конца и практически необратим. В рез-те образуется осадок и выделяется газ. 5)Если соль образована сильным основанием и сильной кислотой, гидролиз не идет.KCl+HOH®гидролиз не идет. нейтрализация в этом случае сводится к процессу Н++ОН-= Н2О а обратная реакция-диссоциация молекулы воды на ионы - протекает в ничтожно малой степени. реакция среды нейтральная.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: