Осмотическое давление - это то давление, которое необходимо приложить раствору, что прекратился осмос. это то избыт давление, кот оказывает р-ор на полупрониц перегородку в момент его равновесия с раств-ем. При измерениях осмотического давления различных растворов было установлено, что величина осмотического давления зависит от концентрации раствора и от его температуры, но не зависит ни от природы растворенного вещества, ни от природы растворителя.
Равнов состояние вода-пар, при кот скорость испар жидк-ти=скор-ти конден-ии. Пар при таком сост-ии наз-ся насыщ-ым, а его давление – давлением насыщ пара. При данной температуре давление насыщенного пара над каждой жидкостью- величина постоянная.Опыт показывает, что при растворении в жидкости какого-либо вещества давление насыщенного пара этой жидкости понижается, т.к. часть поверхности раствора занята мол-ми нелетучего раств вещ-ва, кот сниж скорость испарения молекул раств-ля. Таким образом, давление насыщенного пара растворителя над раствором всегда ниже, чем над чистым растворителем при той же температуре. В 1887 французский физик Рауль, изучая растворы различных нелетучих жидкостей и веществ в твердом состоянии, установил следующие законы: 1) в разбавленных р-ах неэл-ов при пост темп с пониж давления нас пара над раст-ом пропорц-но молярной доле раств вещ-ва. р0-р/р0=m/M, где р0-давление нас пара над чистым раст-ем, р-давление нас пара над раст-ом, m-число молей раств вещ-ва, M-число молей раств-ля. Следствием снижения давления нас пара над раст-ом явл-ся повыш темп кипения и пониж темп замер-я по сравнению с чистым раст-ем. 2) повышение темп кип-я и пониж темп зам-я раст-ов неэл-ов пропорц-но молярной конц-ии р-ра Ñtкип=кэб*Сm, Ñtзам=ккр*Сm, где кэб-эбуллиоскопическая константа, ккр-криоскопичекая константа. Кэб и ккр равны изм-ю темп кип и замер одномолярных раст-ов.
|
25 жесткость воды, методы ее устранения. Состав прир вод хар-ся солесодерж-ием, щелочностью, жесткостью. Жесткость обусловлена содер-ем раствор солей Ca и Mg, присут-ем их гидрокарбонатов (временная), их сульфатов и хлоридов (пост-ая). Врем +пост=общая. Жесткость выр-ся суммой эквивалентов ионов Ca2+ и Mg2+, содержащихся в 1 л воды (ммоль/л). по величине жесткости различают 1)очень мягкая (до 1) – дождевая и снеговая, нет накипи 2)мягкая(1-2) и средняя(2-10) – речная и озерная, образует накипь 3)жесткая(10-12) и очень жесткая(>12) – грунтовая, родниковая, колодезная, много накипи, без умягчения не прим 4)вода морей и океанов(80-100). Отриц действие жесткости: 1)образ накипь в системах охлажд двиг, на стенках паровых котлов, что приводит к перегреву и коррозии 2)соли MgCl2, MgSO4 в р-ре гидролизуются, образую кисл среду, что ускор коррозию констр-ий 3)эти соли вызыв магнез и сульф коррозии цемент камня. Методы устранения сводятся к сниж конц-ии ионов Ca и Mg путем осажд-ия их в виде нераств солей или методом ионного обмена: 1) термич устр-ся только врем ж-ть Ca(HCO3)2=CaCO3+CO2+H2O, 2) реагентирование – не дает дост степени умяг-я, требует большого расхода реактивов, сложность по технолог осущ-ю. Известк метод +Ca(OH)2, содовый +Na2CO3, натронный +NaOH, фосфорный+Na3PO4. 3) в пром услов ж-ть уст методом ионного обмена, кот основан на спос-ти высокомолек соед-ий обменивать вход в их состав подвиж ионы на ионы, наход в воде. Иониты-тв зернистые, нераств в воде вещ-ва. По хар-ру обмен ионов различ катиониты и аниониты. Катиониты NaR,HR – обмен ионы Na+ и H+ на катионы Ca2+ и Mg2+ из воды. Аниониты ROH – обмен анионы OH- на анионы солей из воды. Происход хим обессолев воды. Со врем иониты утрач спос-ть умягчать воду и их подверг регенерации. Воду широко примен в строит-ве. В технол бетон работ воду испол для пригот бетон и раств смесей, поливки констр-ий в процессе тверд бетона, промывки заполнителей.
|
30. Коллоидные растворы. Методы получения, свойства. Коллоидные растворы - высокодисперсные гетероген системы с размером частиц дисперсной фазы 1-100 нм. Для получ и длит сущ-я кол р-ов необх 1)взаимная нераств-ть дисп фазы и диспер среды 2)достиж коллоидной степени диспер-ти частиц дисп фазы 3)наличие стабил-ра, прида-го системе уст-ть(избыток одного из реагентов) или поверх-актив вещ-ва(мыло, белки, желатин). Методы получения: 1)дисперсионный – основан на измел частиц дисп фазы до коллоид сост-я (мехки в шаровых и коллоид мельницах, с пом ультразвука, распыл в электр дуге) 2)конденсационный – основан на объедин молекул, атомов, ионов с образ-ем частиц коллоид размеров (путем замены растворителя, путем хим реакций, проводимых в опред усл-ях, в рез кот образ труднораств соед-я – реакции гидролиза, ОВР, реакции обмена). Золи – кол р-ры с жидкой подвижной дисп средой. Свойства: 1)молек-хим сво-ва проявл в тепловом движ частиц, диффузии, седиментацион(кинет) устойчивости. Частицы дисп фазы золя перем-ся в процессе теплового движ-я, выз-ого беспоряд ударами со стороны мол-л среды, и распред по всему объему системы. Диф-ют не охлаждаясь под действ силы тяжести. 2)оптич – мелкие частицы кол рас-ов нельзя увидеть в обычн микроскоп, только в ультрамик-п. частицы дисп фазы золей меньше длин волн лучей видимого света, поэтому они рассеив свет, но не отраж его. При боков освещ-ии бесц золи имеют голубов окраску. На темном фоне набл-ся свят конус. Золи имеют различн окраску, что опред-ся природой, строением, конц-ей р-ра и услов набляд золя. 3)электрич – при пропуск пост эл тока в силу электростат притяж кол частиц противоионы диф слоя взаимод др с др. при этом наблюд электрофарез (передвиж частиц дисп фазы к электроду), электроосмос(перемещ дисп среды через порист перегородку), агрегат уст-ть(спос-ть сохран опред размеры частиц дисп фазы). Наличие эл заряда у кол гранул приводит к их значит гидратации. Полярные молекулы воды ориент-ся около заряж частиц, образуя гидрат оболочки, что умен стремл частиц к укрупл. По хар-ру взаимод диспер фазы с диспер средой различ лиофоб и лиофил системы. У лиофил кол-ов (золи желатина, крахмала, белков, глин вещ-в) прояв значит взаимод диспер фазы и диспер среды. За счет адсорбции на пов-ти кол частиц образ сольватные (гидратные) оболочки из мол-л дисп среды. Лиофил агрегатно очень устойч за счет защитн дейст-я гидрат оболочек, коаг-ют при большом избытке эл-та, обратимы. При коаг-ии образ гель. Лиофоб кол-ды (золи Au,Cu,S, мульфидов, солей). Слабо взаимод с дисп средой. Неуст. Коаг при небол кол-ве эл-та, осаждаясь в виде хлопьев или порошка. Необратимы. Даже при длит хранении не застуднев. Повысить уст-ть можно добавлением лиофил. Кол защита. Уст-ть золей можно нарушить, устранив заряд коллоид частиц и электрозащит гидратную оболочку. При этом частицы слип-ся под дейст-ем межмолек сил, укрупняясь в размерах. Процесс объедин кол частиц в более крупные агрегаты – коаг-я. Процесс осажд укруп частиц под действ силы тяжести – седиментация. Пептизация – процесс перехода получ при коаг осадка в золь. Строение кол систем. Na2SiO3+2HCl=H2SiO3+2NaCl, FeCl3+H2O=Fe(OH)3+3HCl, H2S+CuSO4=CuS+H2SO4. При столк-ии слип-ся, образуя более крупные частицы, на опред этапе обр-ся агрегат кол частицы, состоящие из молекул m. На пов-ти агрегата адсорб потенциал опред ионы nFe3+. Они опред заряд кол частицы. Агрегат и потен-опред ионы притяг из р-ра противоионы Cl-. Причем их большая часть 3(n-x)Cl- нах-ся ближе к ядру кол частицы с потен образ адсорб слой. Меньшая часть 3xCl-распр-ся в диф подвиж слое. Агрегат+адсорб слой=гранула, гранула+противоионы=мицелла.
|
{m[Fe(OH)3]*nFe3+*3(n-x)Cl-}3x+*3xCl-
43. Химические свойства металлов. Металлы вступая в реакции отдают валентные электроны, проявляя восстанов сво-ва. 1)Чем более отриц значение имеет потенц мет, тем выше восстанов спос-ть мет, тем они активнее. 2)каждый предыд мет ряда потенциалов восстанавл все послед за ним мет из раств их солей. 3)Мет с отриц значением потенциала (до Н) вос-ют Н2 из разбавл HCl и H2SO4. 4)С водой при обычных условиях реаг только щелочные и щелочнозем мет. 5)Концентрированная H2SO4 и HNO3 любой конц-ии прояв окисл сво-ва за счет аниона кислотного остатка. Взаимод почти со всеми мет. Образ-ся соли кислот, вода и продукты восстан-я, хар-р кот зависит от актив мет и конц-ии кислоты. Me+H2SO4(HNO3)=соль+H2O+продукт восстановления. H2SO4: акт мет – S,H2S; неакт мет – SO2. HNO3(к): акт мет – NO2,N2O; неакт – NO2. HNO3(р):акт – N2O,N2,NH3; неакт – NO. Конц H2SO4 и HNO3 в обычных услов не реаг с Al,Co,Ni,Ag,Fe. 6)В конц щелочах раст-ся ме, оксиды и гидроксиды кот амфотерны. 7)Мет взаимод с водой с выдел-ем Н2 и образ-ся гидроксид. 8)Мет взаимод с немет (O,S,CO2,N2).! С Н2 реаг только щелочные и щелочнзем мет.
39. Физические свойства металлов.. Металлическая связь. Металлы – большинство элементов период системы. Для всех, кроме ртути хар-но ТВ.сост и ме-ий блеск. Малоактивные (Cu,Hg,Ag) встреч-ся в самородном состоянии, активные в виде руд (Fe3O4, Fe2S, CaCO3,Al2O3). Свойства: Высокая электро и теплопров-ть. Причиной общности сво-в мет явл-ся сходство в строении их атомов и природа хим связи. В узлах крист решетки мет наход нейтр атомы и полож ионы. Между ними свободно передвиг электроны.(электрон. Газ) При достаточном сближении е с ионами обр-ся нейтр. атомы.
Meатом ↔ Meион + neсвоб.электроны Электроныый газ обуславл метал связь. Небольшое число валентных эл-ов однов-но связ-ет большое число атомов. Поэтому в отличие от ковалент, метал связь делокализована и многоцентр-ая, не обладает направл-ю и насыщ-ю вследствии сферич симметрии атомов мет. Энергия метал связи растет с ростом числа валент эл-ов и заряда ядра, что отраж-ся на темп кип и плавл. Al и мет побочных подгрупп имеют более высокие темп кип и плавл, чем щелочн и щелочнозем мет. Свобод эл-ны обусл-ют все общие св-ва тет – непроз-ть, цветность, блеск, большинстов мет серебристо-белого цвета, золотого, желто-красного. Перем-ся эл-ны обусл-ют теплопров-ть и электропровод-ть мет-ов. Отсут-ие направ-ти связи позвол смещать атомные слои крист решетки без разрыва связи, что придает пласт-ть. Поэтому мет легко диф-ся в проволку, поддаются ковке, штамповке. Мет имеют высок механ проч-ть, твердость, что обусл их применение в кач-ве конструк матер-ов. Мет делятся по цвету – черные и цветные, по плотности - легкие<5г/кубсм (щелоч и щелочнозем) и тяжелые(Fe, Pb, Sn) по темп плавления – лекгоплавкие(Pb, Sn, K, Cs) и тугоплавкие(Fe, Cr, W).
41.Механизм возникновения двойного электрического слоя. Стандартные электродные потенциалы. Уравнение Нернста Между атомами, ионами и электронами в кристал решетке существует равновесие Me(атомы)«Men+(ионы)+ne(электроны в металле). Если погрузить пластину активного металла в раствор его соли, ионы с поверх-о слоя мет под действ полярной молекулы воды начинают отрываться и в гидратир-ом виде переходят в раствор. В рез-те пов-ть мет заряжается отриц из-за избытков электронов. Ионы мет в раст-ре конц-ся у поверх-ти пластины вследствии электростатич притяжения. С повышением кон-ии ионов мет у пов-ти пластины выход из мет их ослаб-ся и усил-ся переход ионов из р-ра в решетку мет. Со временем между поверх-ю мет и раст-ом устан-ся подвижное равновесие. Ме(атомы)+mН2О=Меn++mH2O(гидратир ионы)+nе. Металл становится заряженным отрицательно, а раствор -положительно. Положительно заряженные ионы из раствора притягиваются к отрицательно заряженной поверхности металла. На границе мет-раствор образ двойной эл слой и возникает разность потенциала (скачок), называемый равновесным электродным потенциалом j. Состояние равнов-я зависит от актив-ти мет и концентрации его ионов в растворе. По мере перехода ионов в раствор растёт отрицательный заряд поверхности металла и положительный заряд раствора, что препятствует окислению металла. Для некот мет преоблад процесс перехода ионов мет из р-ра на пов-ть мет, пластина заряж +, р-р из-за избытка анионов соли -. На границе мет-раствор также образуется двойной эл слой и возникает j. Абсолютное значение j экспер-но опред невозм. Опред относит электродный потенциал как разность потенциала, измеряемого электрода и стандартного водородного электрода, потенциал кот равен 0. Станд водор электрод представл пластину, покрытую рыхлым слоем платины. Через р-р кислоты подается газообразный Н2 под р=101325Па и Т=298К, кот адсорбир на пластине. Между ионами Н в р-ре кислоты и Н на пластине возник равновесие 2Н+ +2е=Н2 j0=2Н+/Н2=0. Водородный электрод присоед к мет электроду, потенциал кот необход опред. Электродный потенциал, возн-ий при погруж мет в р-р его соли с активностью ионов мет 8моль*ион, измеряемый по отнош к станд водород электроду при t=298, называется стандартным электрод пот-ом мет j0 Меn+/Ме0 Располагая мет в порядке их станд электрод потенциалов получают ряд стандарт электрод пот-ов. j зав-т от природы мет, конц-ии(активности) его ионов в р-ре и тем-ры. Уравнение Нернста: j=j0+0,059/n*lga, где n-заряд ионов тем, а-активность ионов мет. Стандартный электродный потенциал металлов указывают на меру восстановительной способности атомов металла и меру окислительной способности ионов металла. Чем более отрицательное значение имеет потенциал металла, тем более сильной восстановительной способностью он обладает. При протек ОВР конц-ии исход вещ-в падают, а продуктов реакции – возрастают. Это приводит к измен величин пот-ов обеих полуреакций: j ок-ля падает, j вос-ля возраст. Когда пот-лы обоих процессов становятся равными, реакция заканчивается – наступает состояние хим равновесия.