Замечания по поводу некоторых особенностей ICEM 11.0




При выборе законов разбиения (как в этом меню, так и в меню на страницу выше), возможно допущение ряда “ошибок”, например внесли некорректные данные в закон или, даже, просто закрывая только что описанное меню, нажали не на кнопку , а просто закрыли (нажав на ), а так же в ряде других “странных” случаев. Обычно, сообщение об ошибке появляется некоторое время спустя, например, при попытке ещё раз изменить закон. Для того чтобы восстановить нормальную работу, в появившемся сообщении об ошибке нажмите , а в всплывшем окне “ Edge meshing Parameters ” (аналог меню на стр.9) нажмите .

После того как выбрано разбиение (возвратились в меню на стр.14), очень удобно поставить здесь галочку , и выбрать метод копирования, например , если введена эта настройка, то на все рёбра блока параллельные текущему будут перенесены все настройки для данного ребра (число узлов, закон разбиения и т.д.).

После того как заполнены все только что перечисленные пункты, ребро готово для разбиения, нажимаем кнопку , теперь можно пользоваться всеми свойствами меню предварительного просмотра сеток (на дереве вида вкладка Pre-Mesh).

Возвращаемся к исходной геометрии. На рёбрах NC, ставим число узлов 75, в качестве закона разбиения выбираем сплайн, во вкладке функций находим пункт “парабола со сгущением к концам” (Parabola Ends), несколько модифицируем её (рисунок на этой странице), ставим галочку копировать параметры на все параллельные рёбра. Далее берём любое горизонтальное ребро и ставим число узлов 15, выбираем равномерный закон разбиения (BiGeomertic), также копируем настройки на все параллельные рёбра, тоже самое проделываем для соседнего (с боку) горизонтального ребра (можно любого горизонтального не принадлежащего предыдущему семейству параллельных рёбер).

Разбиваем ребро соответствующие дуге CD: число узлов ставим 15, закон Linear, в появившемся меню выбираем линейную функцию (Ramp) функцию, делаем сгущение к началу (зависит от направления локальной системы координат, т.е. надо посмотреть направление базисных векторов на блоке), для этого делаем отражение слева на права. Поднимаем нижнюю точку так, чтобы размер максимального элемента был 0.00029, а максимального 0.0008 (в результате будет непрерывность сетки в точке С, т.к. при проведении предыдущего разбиения в этой точке было именно это значение длины элемента). Незабываем скопировать параметры. Результат справа.

 

 

Разбиваем ребро соответствующее кривой LN. Аналогично выбираем линейный закон, число узлов задаём 30, минимальный элемент ставим длину 0.000105, а максимальный 0.00029 (таким образом выполнится непрерывность сетки в точке O, точка N, является менее важной, т.к. течение жидкости идёт по внутренности трубки). Незабываем ставить копирование параметров на все параллельные кривые.

Осталось разбить все рёбра параллельные ON (это будут все оставшиеся рёбра), т.к. эта область содержит твёрдое тело, которое нас не интересует, ставим число узлов 5 и закон равномерный.

В результате был получен прообраз сетки. Проверить его корректность можно в пункте предварительного просмотра (Pre-Mesh), приступаем к последней фазе создания сетки.

Так как блоки описывающие внутренность тела представляют одно физическое тело, а блоки описывающие стенку другое, то надо объединить эти блоки соответственно в две новые части (это лучше сделать, чтобы потом не пришлось лишний раз их склеивать в решателе), при этом старые части автоматически исчезнут, вместе с блоками отправляем в эти части и все промежуточные поверхности к которым эти блоки были прикреплены (например поверхности образованные после вращения отрезка NO, эти поверхности не имеют никакого физического смысла, но удалять их нельзя, т.к. тогда “поплывёт сетка”). Как это делать было сказано выше, новые части называем BLOCK_T_1_1 и BLOCK_T_1_2.

Всё готово для создания сетки, создаём её. В дереве вида на вкладке блоков находим пункт предварительной сетки (Pre-Mesh), выбираем опцию создать неструктурированную сетку (Convert to Unstruct Mesh).

Экспорт в решатель

 

Сетка создана. Сохраняем проект под именем Т_1. Выбираем решатель: нажимаем , далее , заполняем поля , затем , жмём ; нажимаем , в появившемся меню нажимаем .

Таким образом первое тело полностью построено и экспортировано в решатель ANSYS CFX.

Построение второго тела

 

Нетрудно заметить, что второе тело представляет собой фигуру вращения. На рис.1 представлен профиль второго тела. Очевидно, что в области 1 и 2 при попытке описать данную фигуру на два вертикальных блока (без учёта центрального разбиения – 0-grid), будут возникать сильные искажения топологии (большие изменения углов). Возникает необходимость ввести дополнительные блоки. Делаем дополнительные построения. Результат представлен на рис.2. Введённые дополнительные отрезки (после вращения станут поверхностями), не имеют никакого физического смысла, а служат только для будущей ассоциации к ним блоков. Аналогично было проведено вращение данного профиля (последовательно на углы ), также созданы два дополнительных круга (образованных вращением точек K и L). Результат представлен на рис.3.

Координаты точек:

A(0.0065 0.0465 0), B(0.004 0.044 0)

C(0.004 0.041 0), D(0.0065 0.043 0)

E(0.004 0.008 0), F(0.0065 0.008 0)

G(0.00215 0.004 0), K(0.00075 0.004 0),

L(0.00042 0 0), M(0.0012 0 0)

N(0.0025 0 0), P(0.0045 0.004 0).

Координаты точек L, M, N, выбирались таким образом, чтобы KG/LM=GP/MN=r(K)/r(L), где r(K), r(L) – расстояния до оси Oy, от точек K и L.

Аналогично была создана блочная структура и проведено построение сетки. Единственной особенностью отличающей этот случай от предыдущего явилось то, что для описания фигуры образованной вращением точек LMNPGK (вместе с кругами образованными вращением точек K и L), потребовалось три вложенных друг в друга блока (если они пропадают из видимости см. замечания в начале).


рис.1

 

рис.2


рис.3

 

Так как второе тело ограничено внешней стенкой тела Т_1 и внутренностью между трубками (см. рис. на стр. 4), то внутренние блоки, получающиеся при проведении центрального разбиения (0-grid), следует удалить, т.к. эта область уже описана в проекте Т_1 (в этом проекте сохранено первое тело). Аналогично созданы отдельные части для стенок, областей входа и выхода, стенка KGECBA (т.е. поверхность вращения) тоже отнесена в отдельную часть для стыковки со стенкой тела Т_1, также в отдельную часть был отнесён круг образованный вращением точки K, для создания интерфейса жидкость-жидкость, на границе первого и второго тела. Для построения сеток были использованы аналогичные законы. Проект был сохранён под названием T_2 и экспортирован в CFX. (около угловых точек F и E, также было сделано сглаживание)



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-07-29 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: