Они необходимы для обеспечения основы топографических съёмок всех масштабов, а так же для решения народнохозяйственных, научных, инженерно-технических и оборонных задач. На участке запроектировано 1 ход IV класса, остальные техническое нивелирование.
При создании высотной основы топографических съемок применяют нивелиры с цилиндрическими уровнями или с компенсаторами. Для нивелирных работ при крупномасштабных съемках получили распространение точные технические нивелиры. При нивелировании IV класса могут быть использованы серийно выпускаемые в России нивелиры Н3, НС3, НС4, НСК4, а так же зарубежные нивелиры Ni-007, Ni-B5, Ni-B6 и другие.
Техническое нивелирование производят с помощью следующих нивелиров: НСК4, НТ, Ni-050, Ni-D3, Ni-E2 и других.
Для нивелирования III и IV классов применяют двусторонние трехметровые деревянные рейки (типа РН-3). При этом случайные погрешности метровых интервалов допускают соответственно 0.5 и 1.0 мм.
При техническом нивелировании используют как трехметровые цельные рейки, так и складные односторонние рейки длиной 3-4 метра (РН-10 в соответствии с ГОСТ 11158-7
Некоторые характеристики нивелиров, выпускаемых отечественной и зарубежной промышленностью.
Тип нивелира | Страна изгот-ль | Увеличение зрительной трубы (кр) | СКП на 1км (мм) | Масса нивелира (кг) |
Н2 | Россия | 6.0 | ||
Н3 | Россия | 1.8 | ||
НС4 | Россия | 2.5 | ||
Ni-007 | Германия | 31.5 | 3.9 | |
Ni-025 | Германия | 2-3 | 1.8 | |
Ni-B3 | ВНР | 28-32 | 2.3 | |
НТ | Россия | 10-15 | 1.2 | |
НТС | Россия | |||
Ni-050 | Германия | 16-18 | 5-10 |
2.4.1. Оценка точности нивелирных построений.
При проектировании нивелирных ходов и сетей, создаваемых в качестве высотной основы топографических съемок, устанавливают погрешности отметок реперов в наиболее слабом месте. При этом полагают, что веса измеренных превышений обратно пропорциональны длинам линий, а средние квадратические случайные и систематические погрешности на 1 км хода известны.
Класс нивелирования | h в мм на 1 км | d в мм на 1 км |
III | 0.5 | |
IV | 1.0 | |
Техническое | 2.5 |
Оценка точности нивелирного хода.
![]() |
Нивелирный ход.
Для вычисления погрешности отметки репера i уравненного нивелирного хода (рис.3) рекомендуется формула
L A,i
mн сл.= h(L A,i (1 - --------)) 1/2, (1.3)
L
где
h - СКП превышения на 1 км двойного хода;
L A,i - Длина нивелирного хода от начального
репера А до точки i.
L - длина всего нивелирного хода.
Для средней точки хода
mн сл.= 0.5 h L1/2 (1.4)
Для учета влияния погрешностей исходных данных в нивелирном ходе после уравнивания имеем:
LA,i
m нид = ------ m AB, 1.5
L
где
m нид -погрешность репера (отметки) i, обусловленная ошибками исходных данных;
m AB - ошибка взаимного расположения исходных реперов А и В.
Для средней точки нивелирного хода имеет место следующая формула:
mн ид = 0.5 mAB, 1.6
вытекающая из формулы (1.5)
Суммарная погрешность положения среднего пункта нивелирного хода на основании (1.4) и (1.6) выражается формулой:
mн2 = 0.25 (h2L+mAB2), 1.7
При этом полагается, что влияние систематических погрешностей незначительно по сравнению с другими ошибками.
Оценка точности системы ходов с узловой точкой.
Рассмотрим систему трех ходов (рис. 4), где Рп1, Рп2, Рп3 - исходные реперы.
Система нивелирных ходов с узловой точкой.
На основании теории оценки точности уравненных элементов получим формулу для учета влияния случайных погрешностей измерений
m нсл = h (L1- (L1(L2-L3))/N)1/2 1.8
В формуле 1.8 обозначено:
m нсл - погрешность отметки узловой точки;
L1(L2-L3 - длина ходов в км;
N = L1L2 + L1L3 + L2L3 1.9
Так как исходные реперы в общем случае нельзя считать безошибочными, то возникает необходимость учета погрешностей исходных данных. Погрешность отметки узловой точки в системе трех ходов (рис.) можно подсчитать по формуле:
L1
m н ид = ------ * (L32 * m2 DH2,1 + L22 m2 DH3.1)1/2 , 1.10
N
где m н ид - погрешность отметки узловой точки за счет погрешностей отметок исходных реперов;
m2 DH2,1 + m2 DH3.1 - погрешность взаимного положения исходных реперов.
Если принять m2 DH2,1 + m2 DH3.1 = mDH, то
L1
m н ид = ------ * m DH (L22 L32)1/2 , 1.11
N
В данной работе оценку точности нивелирного хода выполняем по формуле:
m= h (LА,i (1-LA,i/L))1/2.
h = 10 мм на 1 км хода для IV и h =25мм на 1км хода для технического нивелирования
1. A-F
LA,i=9.5 km
L=16.33 km
mAB=10(9.5(1-9.5/16.33))1/2=19.33 mm
2 F-ОП
LAi=6.4 км
L=12.2 км
M=10(6.4(1-6.4/12.2))1/2=17.4
Вывод: оценка точности нивелирного хода не превышает допустимого значения.
В данной работе мы использовали нивелир Н3.
В нивелировании IV класса наблюдения на станции выполняют в следующем порядке:
1. Устанавливают нивелир в рабочее положение с помощью установочного или цилиндрического уровня.
2. Наводят трубу на черную сторону задней рейки, приводят пузырек уровня подъемным или элевационным винтом точно на середину и берут отсчеты по верхней и средней нитям.
3. Наводят трубу на черную сторону передней рейки и выполняют действия указанные в п.2.
4. Наводят трубу на красную сторону передней рейки и берут отсчет по средней нити.
5. Наводят трубу на красную сторону задней рейки и берут отсчет по средней нити.
При работе нивелиром с компенсатором отсчеты по рейке берутся сразу же после привидения нивелира в рабочее положение и наведение трубы нивелира на рейку.
По окончанию нивелирования по линии между исходными реперами подсчитывают невязку, которая не должна превышать 20 мм * L1/2 (невязки замкнутых полигонов в нивелировании IV класса).
4. Краткие сведения об аэрофототопографической съемке.
Топографические съемки в СССР выполняют аэрофото-топографическим., мензульным, тахеометрическим и другими методами. В настоящее время создание планов крупных масштабов, как правило, производят на основе материалов аэрофотосъемки. При этом основными способами составления крупномасштабных планов являются стереотопографический и комбинированный. Эти способы применяют в зависимости от характера рельефа местности, степени застройки городских территорий и технико-экономических условий.
Стереотопографический способ создания крупномасштабных планов применяют для открытых, незаселенных участков местности, а также для застроенных территорий с одноэтажной или многоэтажной рассредоточенной застройкой. Сущность стереотопографического способа заключается в создании контурной части плана на основе материалов аэрофотосъемки и в рисовке рельефа, выполняемого в камеральных условиях на универсальных стереофотограмметрических приборах.
Достоинство стереотопографического способа является автоматизация целого ряда сложных процессов с использованием ЭВМ. Последовательность выполнения при стереотопографическом способе создания планов крупных масштабов представлена в технологической схеме на рис.
Комбинированный способ создания планов применяют для заселенных участков местности, городских территорий и поселков с плотной многоэтажной застройкой. При комбинированном способе контурную часто плана создают на основе материалов аэрофотосъемки, а дешифрирование участка и рисовку рельефа выполняют на фотопланах непосредственно на местности обычными способами. Таким образом, комбинированная съемка является сочетание аэрофотосъемки с приемами наземного (мензульного) съемки.
Преимущество комбинированного способа создания планов заключается в лучшем отображении формы рельефа в равнинных районах. В тоже время недостатком этого способа является относительно большой объем полевых работ. Последовательность работ при комбинированном способе создания планов определена технологической схемой на рис. Аэрофотосъемку местности выполняют с самолета (АН-30,ИЛ-14ФК) специальными автоматическими аэрофотоаппаратами (АФА). Фотографирование местности производят так, чтобы оптическая ось аэрофоаппарата не отклонялась от отвесного положения более чем на 30.
В результате аэрофотосъемки получают рад взаимно перекрещивающих аэрофотоснимков вдоль каждого маршрута. Необходимым условием обработки аэрофотоснимков является из перекрытие поперек маршрутов.
Величины перекрытий устанавливают в зависимости от масштаба создаваемого плана и рельефа местности, технических средств и условий выполнения аэрофотосъемки.
Для крупномасштабных съемок рекомендуются следующие величины перекрытий аэрофотоснимков:
n продольное 80-90 %;
n поперечное 30-40 %.
При выборе масштаба аэрофотосъемки учитывают высоту сечения рельефа и фокусное расстояние (.f об) аэрофотоаппарата, установленного на самолете. При этом высоту полета можно посчитать по формуле
H = f об * m,
где m - знаменатель масштаба аэрофотосъемки.
Для небольших участков местности применяют мензульную или тахеометрическую съемку, если выполнение аэрофотосъемки нецелесообразно.