Где же он, релятивистский рост массы (энергии, импульса)?




Поскольку в физических процессах, реально происходящих в природе всё взаимосвязано и взаимообусловлено, то и теоретическое описание этих процессов не должны включать в себя противоречащих друг другу положений (постулатов и т.д.). Указывая на взаимообусловленность разных положений новой физической парадигмы, прежде чем приступить к рассмотрению вопроса, затронутого в заголовке, вспомним, статью «Температура, тепловые эффекты реакций ». Там мы показывали, что при контакте «горячего» тела с «холодным» НЕ происходит передачи тепла (тепловой энергии) от горячего тела к холодному, а происходят скоррелированные перераспределения энергий в двух сопряжённых парах энергий в обеих этих телах (горячем и холодном). При этом, если смотреть только на одну из пары энергий в этих сопряжённых парах – на энергию, ответственную за температуру – то и вправду создаётся иллюзия передачи энергии от горячего тела к холодному. Первая сопряжённая пара энергий: энергия возбуждения (атомарного электрона) – энергия связи (этого электрона с ядром, по официальной теории, а точнее, с одним протоном, по новой парадигме) легко и просто обнаруживается. Это, так называемый, «радиационный» нагрев тела, путём поглощения атомами нагреваемого тела гамма-квантов (фотонов), испускаемых «горячим» телом. Приведём поясняющий пример. Полагают, что если атом возбуждается в результате поглощения кванта энергии, то суммарная энергия атома увеличивается на величину энергии возбуждения. Но не следует забывать, что устойчивость атома имеет энергетическую меру: энергию связи – которая, на наш взгляд, принципиально положительна. Из опыта достоверно известно, что, при возбуждении атома, энергия связи уменьшается на величину, равную энергии возбуждения. Т.е., в данном случае энергия возбуждения и энергия связи образуют сопряжённую пару энергий. По нашей логике, среднее положение «разделительных планок» между этими энергиями – для ансамбля атомов – соответствует величине температуры. При «поглощении» и «излучении» квантов энергии атомом, всего лишь сдвигается положение этой «разделительной планки», но сумма энергии возбуждения и энергии связи у атома остаётся постоянной – равной энергии ионизации из основного состояния. Таким образом, при «поглощении» кванта, атом не приобретает энергию сверх той, которую он уже имел, а, при «излучении» кванта, атом не отдаёт нисколько из той энергии, которую он имеет.

Вторая сопряжённая пара энергий, это «собственная энергия », пропорциональная массе и средняя кинетическая энергия хаотического движения атомов и молекул. Собственная энергия пропорциональна массе согласно известной формуле Е = mc2. Только мы трактуем эту формулу в более узком, чем традиционно принято, смысле. Это соотношение справедливо ТОЛЬКО для собственных энергий элементарных частиц и более НИКАКАЯ энергия не пропорциональна массе (вопреки положениям официальной теории). Например, когда нуклоны входят в состав ядра, то энергия их связи в это ядро берётся за счёт собственных энергий (и, стало быть, масс) нуклонов, которая свойствами массы уже не обладает. Этим и объясняется дефект массы составных ядер, когда масса ядра меньше суммы масс, входящих в него нуклонов. Тут следует отметить, что официальная теория дефект масс НЕ объясняет, а только констатирует.

Согласно положениям новой физической парадигмы, кинетическую энергию нельзя сообщить частице откуда-то извне, в кинетическую энергию ТОЛЬКО можно превратить часть её собственной энергии, что пропорциональна массе. При этом, если скорость частицы приближается к скорости света, то её кинетическая энергия становится равной 1/ 3, а собственная энергия равной 2/3 от её собственной энергии покоя. Т.е., масса движущейся частицы не только НЕ РАСТЁТ (как того требует релятивистская теория) в бесконечность, но и УМЕНЬШАЕТСЯ! Но тезис о том, что кинетическая энергия элементарной частицы не может превышать одной трети от её энергии покоя, кажется смешным с позиций современной официальной физики – особенно в свете достижений ускорительной техники, где, как нас уверяют, электронам, имеющим энергию покоя в полмиллиона эВ, сообщают кинетические энергии, исчисляемые миллиардами эВ. «Если бы не было релятивистского роста массы, - вещают с телевизионных экранов академики, - то не работал бы ни один ускоритель!» Для домохозяек такие аргументы – вполне убедительны. Они же не знают, как эти ускорители «работают». Вот давайте и посмотрим, на чём держится вся релятивистская физика с её релятивистским ростом массы (энергии, импульса).

Вот, спрашиваем: как на ускорителях проявляется релятивистский рост массы? Да, отвечают, всё так же, одним-единственным способом: через уменьшение эффективности воздействия электромагнитных полей на быстро движущуюся заряженную частицу – как и в самых первых опытах такого рода с быстрыми электронами (опыты Бухерера, Кауфмана и др.; см., например, [С1,Д3]). Чем больше скорость электрона, тем более сильное магнитное воздействие требуется приложить, чтобы искривить его траекторию. При большом желании, результаты этих опытов, действительно, можно истолковать так: по мере увеличения скорости частицы, у неё увеличивается масса, а вместе с ней и инертные свойства – так что магнитное воздействие на такую частицу вызывает всё меньший отклик.

Но такое толкование уместно, и вправду, только при большом желании – ведь здесь, как говорится, возможны варианты! Известен универсальный принцип: воздействие на объект стремится к нулю, если скорость объекта приближается к скорости передачи воздействия. Этот принцип применим (работает) в очень многих разделах физики. Вот классический пример из механики: ветер разгоняет парусник. Когда скорость парусника становится равной скорости ветра, ветер перестаёт на него действовать. Даже детям понятно: это получается не оттого, что масса парусника становится бесконечной. Аналогичные вещи происходят при раскрутке ротора асинхронной машины вращающимся магнитным полем, а также при взаимодействии электронов с замедленной электромагнитной волной в лампе бегущей волны – и здесь, как полагают, массы тоже остаются самими собой. Лишь для методики магнитного отклонения заряженной частицы делается исключение – здесь, мол, не что иное, как релятивистский рост!

На основании чего делается такое исключение? Скорость заряженной частицы может быть измерена с помощью различных методик, напрямую реализующих понятие скорости, т.е. основанных на измерении промежутка времени, в течение которого преодолевается известное расстояние. Если на заряженную частицу, движущийся с измеренной скоростью v, подействовать поперечным магнитным полем с напряжённостью H, то частица станет двигаться по траектории с радиусом кривизны r:

, (1)

где m и e - соответственно, масса покоя и заряд частицы, g - релятивистский фактор. Анализ искривлений треков сталкивающихся частиц показывает, что сохраняется сумма их релятивистских импульсов m v g. Раз сохраняется релятивистский импульс – значит, мол, он и реален! Но ведь те же самые трековые данные допускают и другую интерпретацию. Если считать, что релятивистский корень в (1) описывает уменьшение напряжённости магнитного поля, которое воспринимает движущийся электрон – в согласии с релятивистскими преобразованиями компонент поля [Л2] – то наблюдаемый радиус кривизны траектории будет соответствовать не истинному значению импульса, а в g раз завышенному. С учётом поправок на это завышение, все трековые данные будут говорить о сохранении именно классического импульса m v. Ибо релятивистский фактор g не будет присущ импульсу, как таковому, а будет являться следствием нелинейности шкалы в данной измерительной методике.

Впрочем, можно до хрипоты спорить – так или этак интерпретировать трековые данные. Но мы обращаем внимание на бесспорный факт: вывод о релятивистском увеличении энергии частицы делается по результатам её взаимодействия только с полями – когда от этой чудовищной энергии никому «ни жарко, ни холодно». Давайте же использовать и другие методики измерения энергии частицы – по результатам её взаимодействия с веществом! Это будет прямое и честное измерение – если измерить всю энергию, в те или иные формы которой превратится энергия частицы! Здесь-то и находится «момент истины»: прямые и честные измерения показывают, что никакого релятивистского роста энергии не существует.

Ну, действительно: кому удалось, из одного релятивистского электрона, извлечь, при его взаимодействии с веществом, энергию в несколько ГэВ? Или хотя бы в несколько МэВ? Давайте посмотрим!

Вот, например, заряженные частицы оставляют треки в камере Вильсона или в пузырьковой камере. При образовании этих треков, превращения энергии, по меркам микромира, огромны – но они происходят, в основном, не за счёт энергии инициирующей частицы. Здесь регистрирующая среда пребывает в неустойчивом состоянии – это переохлаждённый пар или перегретая жидкость. Частица тратит кинетическую энергию лишь на создание ионов в среде – и эти потери энергии невелики. А ионы становятся центрами бурной конденсации или парообразования. Успей сфотографировать очаги фазовых превращений в среде – вот и трек частицы. Но энергия этих фазовых превращений – несоизмеримо больше ионизационных потерь частицы.

А можно ли измерить сами ионизационные потери? Конечно, можно. В своё время в экспериментальной физике широко использовались замечательные приборчики: пропорциональные счётчики. Влетев в этот приборчик, частица растрачивает свою кинетическую энергию на ионизацию атомов вещества-наполнителя – принципиально до полной своей остановки. Чем больше энергия частицы, тем больше ионов она создаёт, и тем больше генерируемый приборчиком импульс тока. Обращаем внимание: средняя энергия, требуемая для создания одной пары ионов, совсем невелика – это два-три десятка эВ [Э1]. По отношению к такой энергии, говорить о релятивистском завышении неуместно. Поэтому к показаниям пропорциональных счётчиков следовало бы относиться с большим доверием – поскольку имеются веские основания полагать, что они измеряют энергию частицы честно. И вот как выглядят результаты этих честных измерений. В «нерелятивистской области», пока энергия частиц малая, результаты её измерения пропорциональными счётчиками совпадают с результатами измерений по методике магнитного отклонения. Но в «релятивистской области» единство измерений нарушается: энергия, измеряемая по магнитной методике, лезет в релятивистскую бесконечность, а энергия, измеряемая пропорциональными счётчиками, выходит на насыщение и дальше не растёт. Причём, не похоже на то, что счётчики «шалят»: все они – при разных типах и конструкциях – показывают одно и то же. А именно: никакого релятивистского роста энергии нет.

Этот очевидный факт причинял релятивистам немало душевных страданий. Пришлось принимать меры: придумывать гипотезы, которые наукообразно разъясняли – отчего у пропорциональных счётчиков, при измерениях в релятивистской области, увеличиваются аппаратурные погрешности. Да ведь как согласованно увеличиваются – в точности маскируя релятивистский рост, как будто его и нет вовсе! Знаете, дорогой читатель, физики обычно не упускают возможности позубоскалить над гипотезами ad hoc – так называются вспомогательные гипотезы, выдвинутые ради только какого-то одного трудно объяснимого случая. Так вот, для разных типов и конструкций пропорциональных счётчиков, «увеличение аппаратурных погрешностей» пришлось объяснять по-разному, так что гипотез ad hoc здесь набрался целый букет. И никто не зубоскалил. Все, похоже, понимали: грешно смеяться над больными.

А страдать релятивистов заставляли не только пропорциональные счётчики. Была ещё одна методика прямого измерения тормозных потерь быстрых заряженных частиц – в фотоэмульсиях. Здесь частица тоже теряет энергию на ионизацию атомов, причём каждый образовавшийся ион становится центром формирования фотографического зёрнышка. И эти зёрнышки различимы под микроскопом. Значит, число ионизаций, произведённых частицей, можно пересчитать, а затем умножить это число на энергию одной ионизации – вот и получится исходная энергия частицы! И что же? А то, что и здесь всё получалось, как и в пропорциональных счётчиках. В «нерелятивистской области», число зёрнышек, умноженное на энергию одной ионизации, вполне соответствовало результатам «магнитной» методики. А в «релятивисткой области» число зёрнышек выходило на постоянную величину и дальше, практически, не росло [Б2]. И, опять же, использовались различные составы фотоэмульсий. И опять же, все они говорили одно и то же: если подходить к вопросу методом простого всматривания, то никакого релятивистского роста энергии не обнаруживается. И опять пришлось выдвигать гипотезы ad hoc. Насчёт того, что быстрая частица теряет энергию в фотоэмульсиях не только на ионизацию: есть, якобы, ещё и «недетектируемые» потери энергии – на возбуждение атомов или ядер, на выбивание нейтральных частиц, на излучение [Б2]. Пикантность ситуации в том, что эффективности разных каналов этих «недетектируемых потерь» по-разному зависят от энергии частицы – но в сумме эти потери, якобы, так согласованно нарастают, что в точности маскируют ожидаемый релятивистский рост детектируемых потерь! Просто цирк какой-то на базе этих гипотез ad hoc. Если тут и лезет что-то в «бесконечность», то это количество выдвинутых гипотез ad hoc. И надо полагать, что если будет изготовлено сотня новых конструкций пропорциональных счётчиков или фотоэмульсий, то их показания прикроют новой сотней гипотез ad hoc.

Не проще и не разумнее ли допустить, что, в релятивистской области, потери не растут просто потому, что истинная кинетическая энергия частицы имеет верхний предел? Нет, этот вопрос не решается по критериям простоты и разумности. Тут дело на принцип пошло! И, чтобы релятивистам не утруждать себя каждый раз объяснениями того, куда же деваются релятивистские излишки энергии частицы, они пустились на небывалый в истории физики прецедент. «Магнитная методика, - заявили они, - непогрешима! Поэтому все остальные методики измерения энергии следует калибровать именно по ней, по магнитной!» После этого им, действительно, полегче стало.

Кстати, были ведь эксперименты, где «магнитная» и «немагнитная» методики встречались, так сказать, нос к носу. Это получалось там, где измеряли импульс отдачи у атома, из ядра которого выстреливался релятивистский электрон при бета-распаде. Здесь устраивалась «очная ставка» двум методикам: импульс отдачи атома измерялся по «немагнитной» методике, а импульс выстреливаемого электрона – по «магнитной», во всей её непогрешимой мощи. Первые же опыты такого рода [К5] поставили в крайне затруднительное положение учёных, стоявших на позициях закона сохранения релятивистского импульса. Ведь импульс электрона получался чудовищно больше, чем импульс отдачи атома. Следите за логикой: импульс электрона измерялся по непогрешимой методике – значит, правильно измерялся именно он. Следовательно, импульс отдачи у атома оказывался чудовищно меньше, чем требовалось по закону сохранения релятивистского импульса. Т.е., подавляющая часть импульса отдачи куда-то тихо исчезала. Экспериментаторы клялись и божились, что это не их рук дело – а теоретики не могли в это поверить... Пялились исследователи на фотопластинки, вертели ими так и сяк… Можно было поступить совсем просто: отбросить иллюзорные релятивистские завышения импульсов у электронов, и тогда их результирующие импульсы становились бы равными импульсам отдачи! Но – что вы! это было бы святотатство! Уж лучше было сидеть и страдать молча… Ферми смотрел-смотрел на эти страдания, и его доброе сердце дрогнуло. «Ладно, - подмигнул он, - вы только не плачьте! Вот что мы сделаем: введём новую частицу. И припишем ей всё, что требуется. Вам нужен импульс? – у ней он есть!» - «Как?! – просияли от радости экспериментаторы. – Так просто? Впрочем, погодите-погодите. Мы же такую возможность исследовали. Никаких следов третьей частицы при бета-распаде не обнаруживается!» - «Ну, и что такого? Если следов не обнаруживается, значит, эта частица их не оставляет! Я же говорю – припишем всё, что требуется!» - «Да, но… странно как-то. Трудно поверить! Частица… импульс имеет… и – никаких следов… Как же её поймать?» - «А зачем обязательно – поймать? Сам по себе процесс ловли – разве он удовольствия не доставляет? Так ловите, до скончания века, и наслаждайтесь! На зависть окружающим!» - «А, ведь, действительно! Позвольте полюбопытствовать, а как предлагается назвать эту неуловимую прелесть?» - «Да придумаем хохмочку какую-нибудь… Вот: назовём эту прелесть нейтрончиком! ». Уж простите за приведённый каламбур, но так и было: нейтрино «открыли» только для того, чтобы не рухнул закон сохранения релятивистского импульса. А чтобы успокоить тех, кто сомневался в реальности нейтрино, ей быстренько приписали статус одной из фундаментальных, абсолютно стабильных, частиц – которых, как считается, всего-то четыре. В физике организовали новый раздел – «Физика нейтрино». Понастроили грандиозных «детекторов», например, в Баксанском ущелье на Кавказе. Чтобы только нейтрино, с их выдающимися проникающими способностями, могли долетать до этого «детектора», помещение для него выдолблено в центре подошвы огромной каменной горы: эта гора прикрывает «детектор» сверху... Так, думаете, эти детекторы реагируют на нейтрино? Да нет, они реагируют на продукты реакций, которые, как полагают теоретики, могут порождать только нейтрино – да и то крайне редко. Уж больно оно неуловимое. Кстати, по свойству исключительно слабо взаимодействовать с веществом, нейтрино резко отличается от остальных частиц, испускаемых при радиоактивных превращениях: нейтрино «умирает» на много порядков реже, чем рождается. Налицо абсурдная асимметрия, которая до сих пор не имеет объяснения. Не проще ли устранить эту асимметрию, признав, что нейтрино и релятивистский импульс являются теоретическими иллюзиями?

 

Но нам могли бы ещё возразить: если релятивистские излишки энергии были бы иллюзиями, то это непременно проявилось бы при сопоставлении энергии частиц с энергиями гамма-квантов, которые измеряются независимыми способами. Увы – хотя арсенал способов измерения энергии гамма-квантов довольно-таки богат [Э2], об их независимости не может быть и речи. Целый ряд методов основан на измерениях энергий конверсионных электронов и вторичных электронов, которые выстреливаются в результате комптон-эффекта, фотоэффекта, и образования электрон-позитронных пар – но «магнитный анализ спектров вторичных электронов… является наилучшим методом точного измерения энергии g-квантов » [Э2]. По результатам этого знакомого «наилучшего метода» калибруются остальные методы – в которых определяются пороги ядерных реакций или энергии вторичных ядерных частиц, а также такой, казалось бы, обособленный метод, как измерение длины волны гамма-излучения с помощью дифракции на кристалле [М1]. Выходит следующее: если, как мы полагаем, метод магнитного отклонения даёт не истинную, а релятивистски завышенную энергию, то с аналогичным завышением определяются и энергии гамма-квантов!

Впрочем, здесь можно было до некоторой степени избегать больших завышений, если при калибровке методом магнитного отклонения использовать частицы с достаточно большой массой – поскольку энергия, которая, близка к предельной у электрона, далека от предела у протона (он на три порядка тяжелее). Отсюда, кстати, вытекает возможность получения ещё одного свидетельства о наличии ограничения у кинетической энергии частицы. Известно множество ядерных реакций с порогами всего в несколько МэВ [Б2]. Эти реакции инициируются, например, протонами, для которых энергия в несколько МэВ является ничтожной, и есть гарантия, что пороги при этом измеряются без релятивистского завышения. Эти же реакции инициируются и нейтронами, и гамма-квантами – была бы их энергия выше пороговой. Электроны, которые имели бы энергию в несколько МэВ, инициировали бы эти реакции, казалось бы, ещё охотнее, чем протоны – ведь электроны притягиваются к ядру, а не отталкиваются от него. Но нет: что-то мешает электронам инициировать ядерные реакции. Считается, что релятивистские электроны, при взаимодействии с ядрами, испытывают почему-то лишь упругое рассеяние [К4]. Налицо странная асимметрия: вылететь из ядра, прихватив оттуда немалую энергию, электрон может (при бета-распаде) – а ударить по ядру, сообщив ему такую же энергию, электрон не может! Что по этому поводу говорит физика высоких энергий? А она по этому поводу хранит гробовое молчание. Высокие энергии оказалось гораздо практичнее измерять не по электронной, а по протонной шкале. Тут уж не до единства измерений – быть бы живу! Ибо из опыта ясно, что, скажем, 3 МэВа у протона – это полноценные 3 МэВа, а 3 МэВа у электрона – это пустышка (максимальная кинетическая энергия, которую может иметь электрон, движущийся почти со скорость света – 170 кЭв (1/3 от 511 кЭв)– это его предел).

Но как же так? Неужели не проводились эксперименты по прямому измерению энергии быстрых электронов – калориметрическим методом – при известном ускоряющем вольтаже? Ведь было сооружено множество ускорителей. И нас уверяют, что без релятивистского роста энергии у быстрых частиц, ни один ускоритель не работал бы! Так покажите нам его, прямо измеренный релятивистский рост! Где же изобилие публикаций на эту тему?

Эх, знали бы домохозяйки, что каждый удачный прогон на серьёзном ускорителе – это для релятивистов чудо, которого они до сих пор понять не могут. Надо же: вкачивают-вкачивают сумасшедшую энергию в ускоряемые электроны, потом этими электронами бьют по мишени… а там, вместо сумасшедшей энергии, выделяется смехотворный пшик! Вот в этом и заключается «работа» ускорителей!

Правда, на ускорителях протонов всё получается повеселее – но, мы полагаем, это потому, что у протона предельное значение кинетической энергии почти в 2000 раз больше, чем у электрона. Впрочем, и здесь специалисты бесконтрольно преувеличивают свои успехи. Вот лишь один эпизод – нашумевшая в своё время история с открытием антипротона [Ч1]. В 1955 г. на протонном ускорителе «Беватрон» в Беркли задумали разогнать протоны так, чтобы кинетической энергии одного протона хватило на рождение новой пары протон-антипротон. Если бы это удалось, это не просто подтвердило бы наличие релятивистского роста энергии. Это было бы нечто большее – свидетельство о том, что из кинетической энергии можно лепить новое вещество! Тогда грош цена была бы нашей логике «цифрового» мира. Так вот, авторы [Ч1] направляли высокоэнергичные протоны на медную мишень и, среди продуктов реакции, регистрировали частицы, имевшие массу протона и отрицательный элементарный заряд. Нас пытаются убедить в том, что пары протон-антипротон рождались именно из кинетической энергии разогнанных протонов! А ведь обманывать нехорошо. Взгляните на уравнение реакции! Исходники: разогнанный протон плюс «ядро». Продукты: тормознутый протон плюс пара протон-антипротон плюс, опять же, «ядро». Что это за «ядро», без которого реакция не получается? А это ядро атома медной мишени, в которое бьёт разогнанный протон. Но где тогда гарантии, что пара протон-антипротон получается именно из кинетической энергии разогнанного протона? Не проще ли этой паре вылететь из возбуждённого ядра? Скажете, что антипротонов в ядре не бывает? Так электронов там тоже, кажется, не бывает – однако при бета-распаде они оттуда вылетают. Забегая вперёд, заметим, что согласно простой универсальной модели ядерных сил («цифровой» мир), в составных ядрах происходят циклические превращения, по ходу которых в ядрах кратковременно присутствуют как электроны, так и антипротоны. Поэтому не требуется тратить энергию на то, чтобы, при ударе по ядру, «родить » электрон или антипротон – гораздо проще «выбить » из ядра и тот, и другой. Если у открывателей антипротона происходило именно выбивание антипротона из ядра, то ядро должно было превращаться в другой изотоп – а, по официальной версии, оно должно было оставаться прежним. Вот если бы авторы установили, что «ядро» в результате реакции остаётся прежним – тогда это доказывало бы официальную версию. Но соответствующий анализ ядер, участвовавших в реакции, не проводился. Мы не издеваемся: мы понимаем, что такой анализ был технически невозможен. Но мы обращаем внимание: раз этого анализа не было, то не было и доказательств того, что всё получилось так, как это нам преподносится. Зарегистрировали вы шесть десятков антипротонов – это, действительно, достижение. Но не надо привирать, что эти антипротоны получились из вкачанной вами кинетической энергии! На Демиургов вы всё-таки не тянете!

Если не ошибаемся, этот эпизод в Беркли был первым случаем, когда экспериментаторы «родили» частицы вещества из «релятивистски завышенной энергии» разогнанной ими частицы. Дальше врать было уже гораздо проще.

 

 

Б2. В.С.Барашенков, В.С.Тонеев. Взаимодействие высокоэнергетических частиц и атомных ядер с ядрами. М., «Атомиздат», 1972.

Д3. Дуков В.М. Электрон. «Просвещение», М., 1966.

К4. Г.Кноп, В.Пауль. Взаимодействие электронов и a-частиц с веществом. В кн.: Альфа-, бета- и гамма-спектроскопия, т.1. Пер. с англ. под ред. К.Зигбана. М., «Атомиздат», 1969.

К5. Crane H.R., Halpern J. Phys. Rev. 53 (1938) 789.

Л2. Ландау Л.Д., Лифшиц Е.М. Теория поля. М.-Л., Гос. изд-во технико-теоретической лит-ры, 1948.

М1. D.E.Muller. H.C.Hoyt, D.I.Klein, J.W.M.DuMond. Phys.Rev., 88, 4 (1952) 775.

С1. Дж.Дж.Странатан. «Частицы» в современной физике. Гос. изд-во технико-теоретической литературы, М.-Л., 1949.

Ч1. O.Chamberlain, E.Segre, C.Wiegand, T.Ypsilantis. Phys.Rev., 100 (1955) 947.

Э1. Экспериментальная ядерная физика. Под ред. Э.Сегрэ. Т.1. «Изд-во иностранной литературы», М., 1955.

Э2. То же, Т.3.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-01-30 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: