Устройство и принцип действия Первичного радиолокатора




Харківський національний університет повітряних сил імені Івана Кожедуба

Факультет інформаційних та технічних систем

 

Кафедра фундаментальних дисциплін та радіотехніки

 

Контрольна робота

З навчальної дисцеплінини Радіоелектроні системи

 

Виконав Студент 351-з

Пащенко О.О

Перевірив: доцент Джус В.С

 

Харків

Радиолокационная станция

 


План:

Введение

  • 1 История
  • 2 Классификация радаров
  • 3 Устройство и принцип действия Первичного радиолокатора
    • 3.1 Частотный метод
    • 3.2 Фазовый метод
    • 3.3 Импульсный метод
    • 3.4 Устранение пассивных помех
  • 4 Диапазоны РЛС
  • 5 Вторичная радиолокация

Примечания
Литература


Введение

Радар

Радиолокационная станция (РЛС) или рада́р (англ. radar от RA dio D etection A nd R anging — радиообнаружение и дальнометрия) — система для обнаружения воздушных, морских и наземных объектов, а также для определения их дальности и геометрических параметров. Использует метод, основанный на излучении радиоволн и регистрации их отражений от объектов. Английский термин-акроним появился в 1941 году, впоследствии в его написании прописные буквы были заменены строчными.

Современный радар на основе фазированных антенных решёток (ФАР)


История

В 1887 году немецкий физик Генрих Герц начал эксперименты, в ходе которых он открыл существование электромагнитных волн, предсказанных теорией Джеймса Максвелла. Герц научился генерировать и улавливать электромагнитные радиоволны и обнаружил, что они по-разному поглощаются и отражаются различными материалами.

Попутно с работами по радиосвязи А. С. Попов сделал еще одно важное открытие. В 1897 году во время опытов по радиосвязи между кораблями он обнаружил явление отражения радиоволн от корабля. Радиопередатчик был установлен на верхнем мостике транспорта «Европа», стоявшем на якоре, а радиоприемник — на крейсере «Африка». В отчете комиссии, назначенной для проведения этих опытов, А. С. Попов писал:

«Влияние судовой обстановки сказывается в следующем: все металлические предметы (мачты, трубы, снасти) должны мешать действию приборов как на станции отправления, так и на станции получения, потому что, попадая на пути электромагнитной волны, они нарушают её правильность, отчасти подобно тому, как действует на обыкновенную волну, распространяющуюся по поверхности воды, брекватер, отчасти вследствие интерференции волн, в них возбужденных, с волнами источника, то есть влияют неблагоприятно».

и далее:

«Наблюдалось также влияние промежуточного судна. Так, во время опытов между „Европой“ и „Африкой“ попадал крейсер „Лейтенант Ильин“, и если это случалось при больших расстояниях, то взаимодействие приборов прекращалось, пока суда не сходили с одной прямой линии».

Этим открытием А. С. Попова было положено начало новому средству наблюдения — радиолокации. Несовершенство техники не позволило тогда же использовать его для создания практически приемлемых приборов, на это потребовалось ещё около 40 лет.

Немецкий радар времён ВМВ на побережье Нормандии

В 1905 году X. Хюльсмейеру был выдан германский патент, по заявке идеи радиолокатора от 30 апреля 1904 г.[1]. В США открытие отражения радиоволн приписывают Тейлору и Юнгу в 1922 году.

Одно из первых устройств, предназначенных для радиолокации воздушных объектов продемонстрировал 26 февраля 1935 года шотландский физик Роберт Ватсон-Ватт, который примерно за год до этого получил первый патент на изобретение подобной системы.

В США первый контракт военных с промышленностью был заключён в 1939 году.

Классификация радаров

Мобильная РЛС «Противник-ГЕ»

По предназначению радиолокационные станции можно классифицировать следующим образом:

  • РЛС обнаружения;
  • РЛС управления и слежения;
  • Панорамные РЛС;
  • РЛС бокового обзора;
  • Метеорологические РЛС.

По сфере применения различают военные и гражданские РЛС.

По характеру носителя:

  • Наземные РЛС
  • Морские РЛС
  • Бортовые РЛС
  • Мобильные РЛС

По типу действия

  • Первичные или пассивные
  • Вторичные или активные
  • Совмещённые

По диапазону волн:

  • Метровые
  • Дециметровые
  • Сантиметровые
  • Миллиметровые

Устройство и принцип действия Первичного радиолокатора

Первичный (пассивный) радиолокатор, в основном, служит для обнаружения целей, освещая их электромагнитной волной и затем принимая отражения (эхо) этой волны от цели. Поскольку скорость электромагнитных волн постоянна (скорость света), становится возможным определить расстояние до цели, основываясь на измерении различных параметров распространения сигнала.

В основе устройства радиолокационной станции лежат три компонента: передатчик, антенна и приёмник.

Передатчик (передающее устройство) является источником электромагнитного сигнала высокой мощности. Он может представлять из себя мощный импульсный генератор. Для импульсных РЛС сантиметрового диапазона — обычно магнетрон или импульсный генератор работающий по схеме: задающий генератор — мощный усилитель, использующий в качестве генератора чаще всего лампу бегущей волны, а для РЛС метрового диапазона, часто используют — триодную лампу. В зависимости от конструкции, передатчик работает либо в импульсном режиме, формируя повторяющиеся короткие мощные электромагнитные импульсы, либо излучает непрерывный электромагнитный сигнал.

Антенна выполняет фокусировку сигнала передатчика и формирование диаграммы направленности, а также приём отражённого от цели сигнала и передачу этого сигнала в приёмник. В зависимости от реализации приём отражённого сигнала может осуществляться либо той же самой антенной, либо другой, которая иногда может располагаться на значительном расстоянии от передающего устройства. В случае, если передача и приём совмещены в одной антенне, эти два действия выполняются поочерёдно, а чтобы мощный сигнал, просачивающийся от передающего передатчика в приёмник не ослепил приёмник слабого эха, перед приёмником размещают специальное устройство, закрывающее вход приёмника в момент излучения зондирующего сигнала.

Приёмник (приёмное устройство) выполняет усиление и обработку принятого сигнала. В самом простом случае результирующий сигнал подаётся на лучевую трубку (экран), которая показывает изображение, синхронизированное с движением антенны.

Различные РЛС основаны на различных методах измерения отражённого сигнала:

Частотный метод

Частотный метод измерения дальности основан на использовании частотной модуляции излучаемых непрерывных сигналов. В данном методе за период излучается частота, меняющаяся по линейному закону от f1 до f2. В то время как отраженный сигнал придёт промодулированным линейно в момент времени предшествующий настоящему на время задержки. Т.о. частота отраженного сигнала, принятого на РЛС, будет пропорционально зависеть от времени. Время запаздывания определяется по резкой перемене в частоте разностного сигнала.

Достоинства:

  • позволяет измерять очень малые дальности;
  • используется маломощный передатчик;

Недостатки:

  • необходимо использование двух антенн;
  • ухудшение чувствительности приёмника вследствие просачивания через антенну в приемный тракт излучения передатчика, подверженного случайным изменениям;
  • высокие требования к линейности изменения частоты;

Это основные её недостатки.

Фазовый метод

Фазовый (когерентный) метод радиолокации основан на выделении и анализе разности фаз отправленного и отражённого сигналов, которая возникает из-за эффекта Доплера, когда сигнал отражается от движущегося объекта. При этом передающее устройство может работать как непрерывно, так и в импульсном режиме. Основным преимуществом данного метода является то, что он «позволяет наблюдать только движущиеся объекты, а это исключает помехи от неподвижных предметов, расположенных между приёмной аппаратурой и целью или за ней.»[6]

Так как при этом используются ультракороткие волны, то однозначный диапазон измерения дальности составляет порядка единиц метра. Поэтому на практике используют более сложные схемы, в которых присутствует две и больше частот.

Достоинства:

  • маломощное излучение, т.к. генерируются незатухающие колебания;
  • точность не зависит от доплеровского сдвига частоты отражения;
  • достаточно простое устройство;

Недостатки:

  • отсутствие разрешения по дальности;
  • ухудшение чувствительности приёмника вследствие проникновения через антенну в приёмный тракт излучения передатчика, подверженного случайным изменениям;

Импульсный метод

Принцип действия импульсного радара

Принцип определения расстояния до объекта с помощью импульсного радара

Современные радары сопровождения построены как импульсные радары. Импульсный радар передаёт излучающий сигнал только в течение очень краткого времени, коротким импульсом (обычно приблизительно микросекунда), после чего переходит в режим приёма и слушает эхо, отражённое от цели, в то время как излучённый импульс распространяется в пространстве.

Поскольку импульс уходит далеко от радара с постоянной скоростью, время, прошедшее с момента посылки импульса и до момента получения эхо-ответа, — есть прямая зависимость расстояния до цели. Следующий импульс можно послать только через некоторое время, а именно после того как импульс придёт обратно (это зависит от дальности обнаружения радара, мощности передатчика, усиления антенны, чувствительности приёмника). Если импульс посылать раньше, то эхо предыдущего импульса от отдалённой цели может быть спутано с эхом второго импульса от близкой цели.
Промежуток времени между импульсами называют интервалом повторения импульса, обратная к нему величина — важный параметр, который называют частотой повторения импульса (ЧПИ). Радары низкой частоты дальнего обзора, обычно имеют интервал повторения в несколько сотен импульсов в секунду. Частота повторения импульсов является одним из отличительных признаков, по которым возможно дистанционное определение модели РЛС.

Достоинства импульсного метода измерения дальности:

  • возможность построения РЛС с одной антенной;
  • простота индикаторного устройства;
  • удобство измерения дальности нескольких целей;
  • простота излучаемых импульсов, длящихся очень малое время [pic], и принимаемых сигналов;

Недостатки:

  • Необходимость использования больших импульсных мощностей передатчика;
  • невозможность измерения малых дальностей;
  • большая мертвая зона;


Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-26 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: