Одной из основных проблем импульсных РЛС является избавление от сигнала, отражающегося от неподвижных объектов: земной поверхности, высоких холмов и т. п. Если к примеру, самолёт находится на фоне высокого холма, отражённый сигнал от этого холма полностью перекроет сигнал от самолёта. Для наземных РЛС эта проблема проявляется при работе с низколетящими объектами. Для бортовых импульсных РЛС она выражается в том, что отражение от земной поверхности затеняет все объекты, лежащие ниже самолёта с радиолокатором.
Методы устранения помех используют, так или иначе, эффект Доплера (частота волны, отражённой от приближающегося объекта, увеличивается, от уходящего объекта — уменьшается).
Самый простой радар, который может обнаружить цель в помехах — радар с селекцией движущихся целей (СДЦ) — импульсный радар, который сравнивает отражения более чем от двух или больше интервалов повторения импульса. Любая цель, которая, движется относительно радара, производит изменение в параметре сигнала (стадия в последовательном СДЦ), тогда как помехи остаются неизменными. Устранение помех происходит путём вычитания отражений из двух последовательных интервалов. На практике устранение помех может быть осуществлено в специальных устройствах — черезпериодных компенсаторах или алгоритмами в программном обеспечении.
СДЦ, работающие с постоянной частотой повторения импульсов, имеют фундаментальную слабость: они являются слепыми к целям со специфическими круговыми скоростями (которые производят изменения фаз точно в 360 градусов), и такие цели не отображаются. Скорость, при которой цель исчезает для радиолокатора, зависит от рабочей частоты станции и от частоты повторения импульсов. Современные СДЦ излучают несколько импульсов с различной частоты повторения — такой, что невидимые скорости в каждой частоте повторения импульсов охвачены другими ЧПИ.
|
Другой способ избавления от помех реализован в импульсно-доплеровских РЛС, которые используют существенно более сложную обработку чем РЛС с СДЦ.
Важное свойство импульсно-доплеровских РЛС — это когерентность сигнала. Это значит, что посланные сигналы и отражения должны иметь определённую фазовую зависимость.
Импульсно-доплеровские РЛС обычно считаются лучше РЛС с СДЦ при обнаружении низколетящих целей во множественных помехах земли, это — предпочтительная техника, используемая в современном истребителе, для воздушного перехвата/управления огнём (примеры тому AN/APG-63, 65, 66, 67 и 70 радары). В современном доплеровском радаре большинство обработки выполняется отдельным процессором в цифровом виде с помощью цифровых сигнальных процессоров, обычно используя высокопроизводительный алгоритм Быстрое преобразование Фурье для преобразования цифровых данных образцов отражений кое во что более управляемое другими алгоритмами. Цифровые обработчики сигналов очень гибки, поскольку используемые в них алгоритмы могут оперативно заменяться другими, изменением только программы в памяти устройства („прошивку“ ПЗУ), таким образом, в случае необходимости, быстро приспосабливаясь к технике глушения противника.
Диапазоны РЛС
Частотные диапазоны РЛС американского стандарта IEEE | ||||
Диапазон | Этимология | Частоты | Длина волны | Примечания |
HF | англ. high frequency | 3—30 МГц | 10—100 м | Радары береговой охраны, «загоризонтные» РЛС |
P | англ. previous | < 300 МГц | > 1 м | Использовался в первых радарах |
VHF | англ. very high frequency | 50—330 МГц | 0,9—6 м | Обнаружение на больших дальностях, исследования Земли |
UHF | англ. ultra high frequency | 300—1000 MHz | 0,3—1 м | Обнаружение на больших дальностях (например, артиллерийского обстрела), исследования лесов, поверхности Земли |
L | англ. Long | 1—2 ГГц | 15—30 см | наблюдение и контроль за воздушным движением |
S | англ. Short | 2—4 ГГц | 7,5—15 см | управление воздушным движением, метеорология, морские радары |
C | англ. Compromise | 4—8 ГГц | 3,75—7,5 см | метеорология, спутниковое вещание, промежуточный диапазон между X и S |
X | 8—12 ГГц | 2,5—3,75 см | управление оружием, наведение ракет, морские радары, погода, картографирование среднего разрешения; в США диапазон 10,525 ГГц ± 25 МГц используется в РЛС аэропортов | |
Ku | англ. under K | 12—18 ГГц | 1,67—2,5 см | картографирование высокого разрешения, спутниковая альтиметрия |
K | нем. kurz — «короткий» | 18—27 ГГц | 1,11—1,67 см | использование ограничено из-за сильного поглощения водяным паром, поэтому используются диапазоны Ku и Ka. Диапазон K используется для обнаружения облаков, в полицейских дорожных радарах (24,150 ± 0,100 ГГц). |
Ka | англ. above K | 27—40 ГГц | 0,75—1,11 см | Картографирование, управление воздушным движением на коротких дистанциях, специальные радары, управляющие дорожными фотокамерами (34,300 ± 0,100 ГГц) |
mm | 40—300 ГГц | 1—7,5 мм | миллиметровые волны, делятся на два следующих диапазона | |
V | 40—75 ГГц | 4,0—7,5 мм | медицинские аппараты КВЧ, применяемые для физиотерапии, а также аппараты для диагностики (например, по методу Фолля) | |
W | 75—110 ГГц | 2,7—4,0 мм | сенсоры в экспериментальных автоматических транспортных средствах, высокоточные исследования погодных явлений |
|
|
Вторичная радиолокация
«Вторичная радиолокация» используется в авиации для опознавания самолетов. Основная особенность — использование активного ответчика на самолётах.
Принцип действия вторичного радиолокатора несколько отличается, от принципа Первичной радиолокации. В основе устройства Вторичной радиолокационной станции лежат компоненты: передатчик, антенна, генераторы азимутальных меток, приёмник, сигнальный процессор, индикатор и самолётный ответчик с антенной.
Передатчик — служит для излучения импульсов запроса в антенну на частоте 1030 МГц
Антенна — служит для излучения и приёма отражённого сигнала. По стандартам ICAO для вторичной радиолокации антенна излучает на частоте 1030МГц и принимает на частоте 1090 МГц.
Генераторы азимутальных меток — служат для генерации азимутальных меток (Azimuth Change Pulse или ACP) и генерации метки Севера (Azimuth Reference Pulse или ARP). За один оборот антенны РЛС генерируется 4096 малых азимутальных меток(для старых систем) или 16384 малых азимутальных меток (для новых систем, их ещё называет улучшенные малые азимутальные метки (Improved Azimuth Change pulse или IACP), а также одну метку Севера. Метка севера приходит с генератора азимутальных меток при таком положении антенны, когда она направлена на Север, а малые азимутальные метки служат для отсчёта угла разворота антенны.
Приёмник — служит для приёма импульсов на частоте 1090 МГц.
Сигнальный процессор — служит для обработки принятых сигналов.
Индикатор — служит для индикации обработанной информации.
Самолётный ответчик с антенной — служит для передачи импульсного радиосигнала, содержащего дополнительную информацию, обратно в сторону РЛС при получении радиосигнала запроса.
Принцип действия вторичного радиолокатора заключается в использовании энергии самолётного ответчика для определения положения воздушного судна. РЛС облучает окружающее пространства запросными импульсами на частоте P1 и P3, а также импульсом подавления P2 на частоте 1030 МГц. Оборудованные ответчиками воздушные суда, находящиеся в зоне действия луча запроса, при получении запросных импульсов, если действует условие P1,P3>P2 отвечают запросившей РЛС, серией кодированных импульсов на частоте 1090 МГц, в которых содержится дополнительная информация о номере борта, высоте и так далее. Ответ самолётного ответчика зависит от режима запроса РЛС, а режим запроса определяется интервалом времени между запросными импульсами P1 и P3, например, в режиме запроса А (mode A) интервал времени между запросными импульсами станции P1 и P3 равен 8 микросекундам и при получении такого запроса ответчик воздушного судна кодирует в импульсах ответа свой номер борта.
В режиме запроса C (mode C) интервал времени между запросными импульсами станции равен 21 микросекунде и при получении такого запроса ответчик воздушного судна кодирует в импульсах ответа свою высоту. Также РЛС может посылать запрос в смешанном режиме, например Режим А, Режим С, Режим А, Режим С. Азимут воздушного судна определяется углом поворота антенны, который в свою очередь определяется путём подсчёта малых азимутальных меток.
Дальность определяется по задержке пришедшего ответа. Если воздушное судно находится в зоне действия боковых лепестков,а не основного луча, или находится сзади антенны, то ответчик воздушного судна при получении запроса от РЛС получит на своём входе условие, что импульсы P1,P3<P2, то есть импульс подавления больше импульсов запроса. В этом случае ответчик запирается и не отвечает на запрос.
Принятый от ответчика сигнал обрабатывается приёмником РЛС, затем поступает на сигнальный процессор, который проводит обработку сигналов и выдачу информации конечному потребителю и (или) на контрольный индикатор.
Плюсы вторичной РЛС:
- более высокая точность;
- дополнительная информация о воздушном судне (номер борта, высота);
- малая по сравнению с первичными РЛС мощность излучения;
- большая дальность обнаружения.
Примечания
1. Водопьянов Ф. А. Радиолокация. М., 1946, с. 13
2. ↑ 12 Поляков В. Т. «Посвящение в радиоэлектронику», М., РиС, ISBN 5-256-00077-2
3. передатчик был установлен на крыше дома 14 по Красноказарменной улице, Москва, приёмник — в районе посёлка Новогиреево; присутствовали М. Н. Тухачевский, Н.Н.Нагорный, М. В. Шулейкин. Аппаратуру демонстрировал П. К. Ощепков.
4. Испытания в Евпатории, группа Б. К. Шембеля
5. Научно-образовательный сайт «Наука Молодая» — «Экспериментус круцис» профессора Ощепкова - www.young-science.ru/index.php?option=com_content&task=view&id=215&Itemid=66
6. Шембель Б. К. У истоков радиолокации в СССР. — Советское радио, 1977, № 5, с. 15-17.
Литература
- Поляков В. Т. «Посвящение в радиоэлектронику», М., РиС, ISBN 5-256-00077-2
- Леонов А. И. Радиолокация в противоракетной обороне. М., 1967
- Радиолокационные станции бокового обзора, под ред. А. П. Реутова, М., 1970
- Мищенко Ю. А., Загоризонтная радиолокация, М., 1972
- Бартон Д. Радиолокационные системы / Сокращенный перевод с английского под редакцией Трофимова К.Н.. — М.. — Военное издательство, 1967. — 480 с.
- М. М. Лобанов «Развитие советской радиолокации» - hist.rloc.ru/lobanov/index.htm
Статьи: