Электрические явления в улитке




При отведении электрических потенциалов от разных частей улитки обнаружено пять различных феноменов: два из них — мембранный потенциал слуховой рецепторной клетки и потенциал эндолимфы — не обусловлены действи­ем звука; три электрических явления — микрофонный потенциал улитки» суммационный потенциал и потенциалы слухового нерва — возникают под влиянием звуковых раздражении (рис. 14.13). [V.G.3] Схематический рисунок показывает афферентные (белые) и эфферентные (черные) волокна. (i) внутренняя волосковая клетка. Эфферентные волокна образуют синаптический контакт с дендритными окончаниями афферентных волокон. (ii) Наружная волосковая клетка. Эфферентные волокна образуют синапсы непосредственно на волосковой клетке, которая имеет лишь небольшое число синапсов (показан только один) с сенсорными (афферентными) волокнами

 

Рис. 14.13. Электрические явления в улитке.

Реакции, регистрируемые с круглого окна улитки (нижние кривые) в ответ на звук (верхние кривые): тон 30U Гц (I), тон 1000 Гц (2), щелчок (3), тональную посылку 21 кГц (4). М — микрофонный потен­циал; Н — нервный компонент (суммарный синхронизированный ответ волокон слу­хового нерва).

 

Если ввести в улитку электроды, соединить их с динамиком через усилитель и подействовать на ухо звуком, то динамик точно вос­произведет этот звук. Описываемое явление называют микрофон­ным эффектом улитки, а регистрируемый электрический потен­циал назван кохлеарным микрофонным потенциалом. Доказано, что он генерируется на мембране волосковой клетки в результате деформации волосков. Частота микрофонных потенциалов соот­ветствует частоте звуковых колебаний, а амплитуда потенциалов в определенных границах пропорциональна интенсивности звука.

В ответ на сильные звуки большой частоты (высокие тона) отмечают стойкий сдвиг исходной разности потенциалов. Это явление получило название суммаиионного потенциала. Различают положительный и отрицательный суммационные потенциалы. Их величины пропорциональны интенсивности звукового давления и силе прижатия волосков рецепторных клеток к покровной мем­бране.

Микрофонный и суммационный потенциалы рассматривают как суммарные рецепторные потенциалы волосковых клеток. Имеются указания, что отрицательный суммационный потенциал генериру­ется внутренними, а микрофонный и положительный суммационные потенциалы — наружными волосковыми клетками. И наконец, в результате возбуждения рецепторов происходит генерация им­пульсного сигнала в волокнах слухового нерва (рис. 14.14[V.G.4]).

 

Рис. 14.14. Принцип залпов в генерации импульсов в волокнах слухового нерва.

1 — звуковой сигнал; 2 — 9 — реакции от­дельных волокон; 10—суммарная реакция этих волокон, повторяющая частоту звука.

 

Иннервация волосковых клеток спирального органа. Сигналы от волосковых клеток поступают в мозг по 32000 афферентных нервных волокон, входящих в состав улитковой ветви VIII пары черепных нервов. Они являются дендритами ганглиозных нервных клеток спирального ганглия. Около 90 % волокон идет от внут­ренних волосковых клеток и лишь 10 % — от наружных. Сигналы от каждой внутренней волосковой клетки поступают в несколько волокон, в то время как сигналы от нескольких наружных волос­ковых клеток конвергируют на одном волокне. Помимо афферент­ных волокон, спиральный орган иннервируется эфферентными во­локнами, идущими из ядер верхне-оливарного комплекса (оливо-кохлеарные волокна). При этом эфферентные волокна, приходя­щие к внутренним волосковым клеткам, оканчиваются не на самих этих клетках, а на афферентных волокнах. Считают, что они ока­зывают тормозное воздействие на передачу слухового сигнала, способствуя обострению частотного разрешения. Эфферентные волокна, приходящие к наружным волосковым клеткам, воздейст­вуют на них непосредственно и, возможно, регулируют их длину и тем самым управляют чувствительностью как их самих, так и внутренних волосковых клеток.

Электрическая активность путей и центров слуховой системы. Даже в тишине по волокнам слухового нерва следуют спонтан­ные импульсы со сравнительно высокой частотой (до 100 в секун­ду). При звуковом раздражении частота импульсации в волокнах нарастает и остается повышенной в течение всего времени, пока действует звук. Степень учащения разрядов различна у разных волокон и обусловлена интенсивностью и частотой звукового воз­действия (см. рис. 14.14). В центральных отделах слуховой системы много нейронов, возбуждение которых длится в те­чение всего времени действия звука. На низких уровнях слуховой системы сравнительно немного нейронов, отвечающих лишь на включение и выключение звука (нейроны on-, off- и on-off[V.G.5] - типа). На высоких уровнях системы процент таких нейронов возрастает. В слуховой зоне коры большого мозга много нейронов, вызванные разряды которых длятся десятки секунд после прекра­щения звука.

На каждом из уровней слуховой системы с помощью макро­электродов могут быть зарегистрированы характерные по форме вызванные потенциалы, отражающие синхронизированные реакции (ВПСП, ТПСП и импульсные разряды) больших групп нейронов и волокон (рис. 14.15).

 

Рис. 14.15. Вызванные потенциалы раз­ных уровней слуховой системы.

Суммарные ответы на звуковой щелчок и слуховом нерве (СН), улитковых (кохлеарных) ядрах (КЯ), верхней оливе (ВО), латеральной петле (ЛП), задних холмах четверохолмия (ЗХ), внутреннем коленча­том теле (ВКТ) и слуховой зоне коры (СК). Отметка времени - 5 мс (слева) и 20 мс (справа).

 

Слуховые функции



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-05-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: