Библиографические ссылки




1. Jóźwiak A., Kurzawiński S. The Concept of Using the Joint Precision Airdrop System in the Process of Supply in Combat Actions. Systemy Logistyczne Wojsk, 2019, vol. 51, no 2, pp. 27-42. DOI: 10.37055/slw/129219.

2. Fields T., Yakimenko O. Development of a Steerable Single-Actuator Cruciform Parachute. J. of Aircraft, 2018, vol. 55, no. 3, pp. 1041-1049. DOI: 10.2514/1.C034416.

3. Fields T., LaCombe J., Wang E. Time-Varying Descent Rate Control Strategy for Circular Parachutes. J. of Guidance Control and Dynamics, 2015, vol. 38, no. 8, pp. 1468-1477. DOI: 10.2514/1.G000627.

4. Gao X., Zhang O., Chen Q., Wang W. Fluid-structure Interactions on Steerable Cruciform Parachute Inflation Dynamics. 5th International Conference on Mechanical and Aeronautical Engineering (ICMAE 2019), Series: Materials Science and Engineering, 2019, vol. 751.

5. Fagley C., Seidel J., McLaughlin T., Noetscher G., Rose T. Computational Study of Air Drop Control Mechanisms for Cruciform Parachutes. AIAA 2017-3541, Session: Aerodynamic Decelerator Systems: Aerial Delivery, 2017. DOI: 10.2514/6.2017-3541.

6. Ledkov A. Modeling the spatial motion of a space tether system with an inflatable balloon for raising payload orbit. International Conference on Information Technology and Nanotechnology (ITNT), 2020, pp. 1-5. DOI: 10.1109/ITNT49337.2020.9253250.

7. Negrean I., Kacso K., Schonstein C., Duca A., Rusu F., Cristea F., Haragas S. New Formulations on Motion Equations in Analytical Dynamics. Applied Mechanics and Materials, 2016, vol. 823, pp. 49-54. DOI: 10.4028/www.scientific.net/AMM.823.49.

8. Roithmayr C., Beaty J., Pei J., Richard Barton R., Matz D. Linear Analysis of a Two-Parachute System Undergoing Pendulum Motion. AIAA 2019-3378, Session: Parachute Modeling and Analysis, 2019. URL: https://doi.org/10.2514/6.2019-3378

9. Jing Pei J. Nonlinear Analysis of a Two-Parachute System Undergoing Pendulum Motion. AIAA 2019-3379, Session: Parachute Modeling and Analysis, 2019. URL: https://doi.org/10.2514/6.2019-3379.

10. Чуркин В. М. Устойчивость и колебания парашютных систем. Москва: URSS. 2018. 230 с.

11. Иванов П. И. Расчет аэродинамической нагрузки на планирующий парашют при его развертывании и перегрузке, действующей на сбрасываемый объект // Авиационная и ракетно-космическая техника. 2021. Т. 28, № 2. С. 115–126. DOI: 10.34759 / vst-2021-2-115-126.

12. Li G., Shi G., Zhu Z.H. Three-Dimensional High-Fidelity Dynamic Modeling of Tether Transportation System with Multiple Climbers. JGCD, 2019, vol. 42, no 8. DOI: 10.2514/1.G004118.

13. Htun T. Z., Suzuki H., Kuwano A., Tomobe H. Numerical Motion Analysis of ROV coupled with Tether Applying 24-DOFs Absolute Nodal Coordinate Formulation. Proc. of the Twenty-ninth International Ocean and Polar Engineering Conference, 2019, vol. 1, p. 1553. ISBN 978-1 880653 85-2; ISSN 1098-6189.

14. Suzuki H., Tomobe H., Kuwano A., Takasu K., Htun T.Z. Numerical Motion Analysis of ROV applying ANCF to Tether Cable Considering its Mechanical Property. Proc. of the Twenty-eight International Ocean and Polar Engineering Conference, 2018, vol. 1, pp. 365-372. ISBN 978-1-880653-87-6; ISSN 1098-6189.

15. Suzuki H., Yamazoe A., Htun T.Z. Numerical Modeling of Cable-winch System for ROV Launching and Recovering Processes based on the Finite Element Approach. Proc. of the Thirtieth International Ocean and Polar Engineering Conference, 2020, vol. 1, p. 1287. ISBN 978-1-880653-84-5; ISSN 1098-6189.

16. Liu C., Ding L., Gu J. Dynamic Modeling and Motion Stability Analysis of Tethered UAV. 5th International Conference on Robotics and Automation Sciences (ICRAS), 2021, pp. 106-110. DOI: 10.1109/ICRAS52289.2021.9476254.

17. Migliore H., McReynolds E. Ocean Cable Dynamics Using on Orthogonal Collocation Solution. AIAA J., 1982, vol. 20, no. 8, pp. 1084-1091.

18. Razoumny Y., Kupreev S., Misra A.K. Method of Tethered System Control for Deorbiting Objects Using Earth’s Atmosphere (IAA-AAS-DyCoSS3-152 – AAS 17-923), 2017. URL: https://www.univelt.com/linkedfiles/v161%20Contents.pdf

19. Razoumny Y., Kupreev S., Misra A.K. The Research Method of Controlled Movement Dynamics of Tether System / Conference: First IAA/AAS SciTech Forum on SPACE FLIGHT MECHANICS AND SPACE STRUCTURES AND MATERIALS.IAA-AAS-SciTech2018-113 – AAS 18-832, 2020, pp. 417-432. URL: https://www.univelt.com/linkedfiles/v170%20Contents.pdf

20. Williams P., Lansdorp B., Ockels W. Optimal Crosswind Towing and Power Generation with Tethered Kites. J. of Guidance, Control, and Dynamics, 2009, vol. 31, no. 1, pp. 81-93. DOI: 10.2514/1.30089.

 

References

1. Jóźwiak A., Kurzawiński S. The Concept of Using the Joint Precision Airdrop System in the Process of Supply in Combat Actions. Systemy Logistyczne Wojsk, 2019, vol. 51, no 2, pp. 27-42. DOI: 10.37055/slw/129219.

2. Fields T., Yakimenko O.Development of a Steerable Single-Actuator Cruciform Parachute. J. of Aircraft, 2018, vol. 55, no. 3, pp. 1041-1049. DOI: 10.2514/1.C034416.

3. Fields T., LaCombe J., Wang E. Time-Varying Descent Rate Control Strategy for Circular Parachutes. J. of Guidance Control and Dynamics, 2015, vol. 38, no. 8, pp. 1468-1477. DOI: 10.2514/1.G000627.

4. Gao X., Zhang O., Chen Q., Wang W. Fluid-structure Interactions on Steerable Cruciform Parachute Inflation Dynamics. 5th International Conference on Mechanical and Aeronautical Engineering (ICMAE 2019), Series: Materials Science and Engineering, 2019, vol. 751.

5. Fagley C., Seidel J., McLaughlin T., Noetscher G., Rose T. Computational Study of Air Drop Control Mechanisms for Cruciform Parachutes. AIAA 2017-3541, Session: Aerodynamic Decelerator Systems: Aerial Delivery, 2017. DOI: 10.2514/6.2017-3541.

6. Ledkov A. Modeling the spatial motion of a space tether system with an inflatable balloon for raising payload orbit. International Conference on Information Technology and Nanotechnology (ITNT), 2020, pp. 1-5. DOI: 10.1109/ITNT49337.2020.9253250.

7. Negrean I., Kacso K., Schonstein C., Duca A., Rusu F., Cristea F., Haragas S. New Formulations on Motion Equations in Analytical Dynamics. Applied Mechanics and Materials, 2016, vol. 823, pp. 49-54. DOI: 10.4028/www.scientific.net/AMM.823.49.

8. Roithmayr C., Beaty J., Pei J., Richard Barton R., Matz D. Linear Analysis of a Two-Parachute System Undergoing Pendulum Motion. AIAA 2019-3378, Session: Parachute Modeling and Analysis, 2019. URL: https://doi.org/10.2514/6.2019-3378

9. Jing Pei J. Nonlinear Analysis of a Two-Parachute System Undergoing Pendulum Motion. AIAA 2019-3379, Session: Parachute Modeling and Analysis, 2019. URL: https://doi.org/10.2514/6.2019-3379.

10. Churkin V.M. Ustoychivost i kolebania parashutnih sistem [Stability and vibrations parachute systems]. Moscow, URSS Publ., 2018, 230 p. (in Russ.)

11. Ivanov P.[Calculation of the Aerodynamic Load on the Gliding Parachute During Its Deployment and Overload Acting on the Dropped Object], Vestnik Moskovskogo Aviatsionnogo Instituta = Aerospace MAI Journal, 2021, vol. 28, no. 2, pp. 115-126. (in Russ.). DOI: 10.34759 / vst-2021-2-115-126.

12. Li G., Shi G., Zhu Z.H. Three-Dimensional High-Fidelity Dynamic Modeling of Tether Transportation System with Multiple Climbers. JGCD, 2019, vol. 42, no 8. DOI: 10.2514/1.G004118.

13. Htun T. Z., Suzuki H., Kuwano A., Tomobe H. Numerical Motion Analysis of ROV coupled with Tether Applying 24-DOFs Absolute Nodal Coordinate Formulation. Proc. of the Twenty-ninth International Ocean and Polar Engineering Conference, 2019, vol. 1, p. 1553. ISBN 978-1 880653 85-2; ISSN 1098-6189.

14. Suzuki H., Tomobe H., Kuwano A., Takasu K., Htun T.Z. Numerical Motion Analysis of ROV applying ANCF to Tether Cable Considering its Mechanical Property. Proc. of the Twenty-eight International Ocean and Polar Engineering Conference, 2018, vol. 1, pp. 365-372. ISBN 978-1-880653-87-6; ISSN 1098-6189.

15. Suzuki H., Yamazoe A., Htun T.Z. Numerical Modeling of Cable-winch System for ROV Launching and Recovering Processes based on the Finite Element Approach. Proc. of the Thirtieth International Ocean and Polar Engineering Conference, 2020, vol. 1, p. 1287. ISBN 978-1-880653-84-5; ISSN 1098-6189.

16. Liu C., Ding L., Gu J. Dynamic Modeling and Motion Stability Analysis of Tethered UAV. 5th International Conference on Robotics and Automation Sciences (ICRAS), 2021, pp. 106-110. DOI: 10.1109/ICRAS52289.2021.9476254.

17. Migliore H., McReynolds E. Ocean Cable Dynamics Using on Orthogonal Collocation Solution. AIAA J., 1982, vol. 20, no. 8, pp. 1084-1091.

18. Razoumny Y., Kupreev S., Misra A.K. Method of Tethered System Control for Deorbiting Objects Using Earth’s Atmosphere (IAA-AAS-DyCoSS3-152 – AAS 17-923), 2017. URL: https://www.univelt.com/linkedfiles/v161%20Contents.pdf

19. Razoumny Y., Kupreev S., Misra A.K. The Research Method of Controlled Movement Dynamics of Tether System / Conference: First IAA/AAS SciTech Forum on SPACE FLIGHT MECHANICS AND SPACE STRUCTURES AND MATERIALS.IAA-AAS-SciTech2018-113 – AAS 18-832, 2020, pp. 417-432. URL: https://www.univelt.com/linkedfiles/v170%20Contents.pdf

20. Williams P., Lansdorp B., Ockels W. Optimal Crosswind Towing and Power Generation with Tethered Kites. J. of Guidance, Control, and Dynamics, 2009, vol. 31, no. 1, pp. 81-93. DOI: 10.2514/1.30089.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-10-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: