Графическое определение работы




Ввиду сложности математического вычисления работы па практике часто пользуются для этой цели графическим методом. Будем откладывать по оси абсцисс длину пути, пройденного точкой, а по оси ординат — соответствующую проекцию силы на направление скорости, учитывая и знак проекции. Получим некоторую кривую, изображающую зависимость между проекцией силы на направление скорости и путем точки. Площадь, ограниченная этой кривой, осью абсцисс и двумя крайними ординатами, изображает работу силы на данном пути. Если кривая или часть ее расположена по отрицательную сторону, вниз от оси абсцисс, то соответствующая площадь изображает отрицательную работу.

Для построения графика зависимости силы от пути имеются различные приборы. В частности, специальный прибор — индикатор— служит для записи давления в цилиндре в зависимости отхода поршня. Работу, вычисленную при помощи индикаторной диаграммы, т.е. диаграммы, начерченной этим прибором, называют индикаторной работой.

Работа силы тяжести не зависит от вида траектории центра тяжести тела и равна произведению веса тела на изменение высоты центра тяжести тела: AG=Gh

Работа силы тяжести

Складывая веса всех частиц тела, заменим их одной силой G, равной весу тела и приложенной в центре тяжести С. Пусть при движении тела центр тяжести тела переместился из C1(x1, yl, z1) в C2 (x2, y2, Z2) (рис. 210). Определим проекции веса на оси координат, считая, что Oz направлена вертикально вверх:

X=O; Y = 0; Z = -G,

и, подставив их в (222'), получим под знаком интеграла полный дифференциал, а потому

или

A = G (z1—z2) = Gh. (223)э


Рис. 210

Следовательно, работа силы тяжести не зависит от вида траектории точек тела и равна произведению веса тела на разность начальной и конечной высот центра тяжести. Если тело опускается, то сила тяжести тела совершает положительную работу, а если поднимается, то отрицательную. Так, например, если человек поднял гирю весом 10 кГ на высоту одного метра (безразлично—по вертикали или по иной траектории), то работа силы тяжести равна —10 кГ м, а работа человека на преодоление силы тяжести равна +10 кГ м.

Элементарная работа силы, приложенной к телу, закрепленному на неподвижной оси, равна произведению момента силы относительно оси вращения на бесконечно малый угол поворота: dА = Mdφ

Задача №1

Однородный массив ABED, размеры которого указаны на чертеже (рис. 211, а), весит 4 Т. Определить работу, которую необходимо произвести, чтобы опрокинуть его вращением вокруг ребра D.


Рис. 211

Решение. 1-й способ. Рассматриваем опрокидывание массива. Какие силы действуют на массив? Их две: вес массива G=4 Т, приложенный в его центре тяжести С, и реакция фундамента. Во время опрокидывания реакция приложена в ребре D, вокруг которого происходит опрокидывание (рис. 211,6), как известно из статики). Но во время опрокидывания ребро D неподвижно, поэтому работа реакции равна нулю. Работу веса (силы тяжести) определим по (223). Для опрокидывания массива достаточно повернуть его до положения неустойчивого равновесия, изображенного на рис. 211, в, при котором центр тяжести находится в вертикальной плоскости, проходящей через ребро D; далее массив опрокинется сам. Имеем


Такова работа силы тяжести при опрокидывании массива. Чтобы опрокинуть массив, надо произвести работу, такую же по величине и обратную по знаку.

2-й способ. Несколько сложнее получится решение задачи, если мы воспользуемся формулой (225) о работе сил, приложенных к вращающемуся телу.

На поворачиваемый вокруг ребра D массив действуют вес и реакция в ребре D. Момент реакции относительно оси вращения равен нулю, следовательно, равна нулю и работа реакции. Момент веса — величина переменная — равен произведению силы 4 T на плечо CD cos φ, где φ (см. рис. 211, б) —угол, составляемый CD с горизонтальной плоскостью:

M = 20 cos φ.

Определим пределы интегрирования. При начале работы массив стоял вертикально, высота центра тяжести была 4 м и

Угол считаем отрицательным, так как отсчет производим по ходу часов:

φ0 = arcsin 0,8.

В конечном положении (см. рис. 211, в)

Подставляя в (225), получаем

Мы определили работу восстанавливающего момента, вызванного силой тяжести и стремящегося восстановить устойчивое равновесие массива. Работа на опрокидывание массива вращением вокруг ребра D равна ей по величине и противоположна по знаку.

Ответ. А = + 4 Тм.

Задача №2

Определить работу на преодоление силы земного притяжения при запуске на высоту 30 000 м ракеты массой m = 2000 кг, считая силу притяжения изменяющейся по закону всемирного тяготения. Радиус земного шара принять R = 6 370 000 м.

Решение. На ракету действует сила, направленная к центру Земли и равная

где k — постоянный коэффициент пропорциональности, M — масса Земли, - масса ракеты и x = h + R — расстояние ракеты от центра Земли.

Обозначая kM через μ, имеем

При x=R ракета находится на поверхности Земли и F = mg,

откуда

Зная μ и k, можно определить массу Земли, потому что k = μ: M.

Работу переменной силы F на перемещение ракеты с поверхности Земли на высоту h= 30 000 м определим по (222):

Отрицательный знак показывает, что при подъеме ракеты сила тяготения ракеты к Земле направлена против движения. Чтобы преодолеть эту силу на заданном расстоянии, надо совершить работу, такую же по величине, но положительную по знаку.

Ответ. A = + 5 621 262 369 Дж.

Домашнее задание:

Прочитайте конспект



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2021-12-08 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: