Общая структура конструкторских каталогов




Ясно, что применять конструкторские каталоги гораздо легче, если их структура единообразна и соответствующая терминология точна. Особенно хороши в этом отношении "одномерные" и "двумерные" каталоги. Группировка содержания каталога соответствует в первом случае одномерной, а во втором - двумерной классификации.

Машиностроительные материалы.

Выбор материала и термообработки деталей машин определяется конструктивными соображениями (обеспечение надежности), технологическими (единичное, серийное, массовое производство) и экономическими.

Для изготовления деталей машин широко применяют стали и чугуны, а также алюминиевые, магниевые, титановые и медные сплавы.

С Т А Л И -

Сталями называют железоуглеродистые сплавы с содержанием углерода до 2%. По сравнению с другими материалами стали имеют высокую прочность, пластичность, хорошо обрабатываются термически, химико-термически и механически.

Общая характеристика. В зависимости от содержания углерода стали подразделяют на низкоуглеродистые (С ≤ 0,25 %), среднеуглеродистые (С = 0,25 ÷ 0,6%) и высокоуглеродистые (С>0,6%). С увеличением содержания углерода возрастает прочность и снижается пластичность. В обозначении марки стали среднее содержание углерода в сотых долях процента показывают первые две цифры (например, сталь 45 содержит 0,45% углерода).

Для улучшения свойств (механических, коррозионных, тепловых и др.) сталей применяют легирующие присадки (в скобках указаны буквенные обозначения присадок в марке стали): вольфрам - (В)

марганец - (Г)

медь - (Д)

молибден - (М)

никель - (Н)

бор - (Р)

кремний - (С)

титан - (Т)

хром - (X)

ванадий - (Ф)

алюминий - (Ю)

Процентное содержание в стали легирующих присадок указывают цифрами после буквы (например, сталь 12Х2Н4А содержит в среднем 0,12% углерода, 2% хрома и 4% никеля). По способу производства углеродистые стали подразделяют на стали обыкновенного качества и стали качественные конструкционные, а легированные стали — на качественные, высококачественные (в конце обозначения марки стали содержится буква А, например, ЗОХГСА) и особо высококачественные.

Из углеродистых сталей обыкновенного качества для изготовления неответственных деталей (корпусов, крепежа и др.) наиболее часто используют мартеновские стали, обозначаемые буквами Ст и номерами в порядке возрастания прочности (от СтО до Ст7, начиная со стали Ст4 номер соответствует 0,1σв min.; σв min. — минимальное значение предела прочности стали).

Легированные стали дороже углеродистых. Они, а также качественные углеродистые стали имеют высокую прочность (σв = 800 ÷ 1400 МПа) при массовой плотности ρ = 7,8 г/см3 и являются основными материалами для изготовления различных ответственных деталей машин (зубчатых колес, валов и т. п.).

Термическая обработка. Для придания стали определенных свойств (высокой прочности, пластичности и т. д.) выполняют термическую обработку заготовок или готовых деталей, которая состоит из трех последовательных стадий: нагрева до требуемой температуры с определенной скоростью, выдержки при этой температуре в течение требуемого времени и охлаждения с заданной скоростью.

Наиболее распространены четыре процесса термической обработки: отжиг, нормализация, закалка и отпуск.

Отжиг, характеризуемый медленным охлаждением (вместе с печью или на воздухе) после нагрева и выдержки при некоторой температуре деталей и заготовок, проводят для снижения твердости и улучшения обрабатываемости резанием отливок, проката и поковок из углеродистых легированных сталей, а также для снятия остаточных напряжений в конструкциях после сварки или предварительной (черновой) обработки резанием. Для углеродистых и углеродистых легированных сталей проводят полный отжиг — нагрев до температуры, превышающей на 30-50 °С температуру превращения объемно-центрированной решетки железа в гранецентрированную кубическую решетку (обычно 800-900 °С), выдержку при этой температуре, медленное охлаждение до 400-600 °С вместе с печью и далее на воздухе. Для низкоуглеродистых высоколегированных сталей 12Х2Н4А, 20Х2Н4А и др., используемых для изготовления зубчатых колес, применяют низкотемпературный (высокий) отжиг при температуре 650 — 670 °С и медленное охлаждение (чаще всего на воздухе). Используют и другие виды отжига, которые отличаются от высокого отжига температурой нагрева и скоростью охлаждения.

Нормализация отличается от полного отжига характером охлаждения, которое после выдержки производят на воздухе. Ее применяют для получения однородной структуры с более высокой твердостью и прочностью, чем после отжига, для исправления структуры сварных швов, выравнивания структурной неоднородности поковок и отливок, а также для улучшения обрабатываемости резанием сталей.

Закалка отличается от полного отжига и нормализации высокой скоростью охлаждения заготовок или деталей после нагрева до температуры превращения и выдержки при этой температуре. Высокая скорость охлаждения достигается за счет использования в качестве охлаждающей среды воды, масла, водных растворов солей NaOH, NaCl и др. В результате металл приобретает мелкозернистую однородную структуру с высокой твердостью, прочностью, износостойкостью, коррозионной стойкостью, но пониженной пластичностью и более трудной обрабатываемостью резанием.

Закалку широко используют для обработки отливок, поковок, штамповок и обработанных деталей из средне- и высокоуглеродистых и легированных сталей для получения высоких эксплуатационных характеристик.

Существует ряд разновидностей объемной закалки, отличающихся условиями и характером быстрого охлаждения.

Широко применяют поверхностную закалку - нагрев с большой скоростью поверхностного слоя стальной детали (токами высокой частоты, электронным лучом и др.) выше температуры превращений и последующее быстрое охлаждение с получением мелкозернистой структуры в поверхностном слое определенной толщины. При поверхностной закалке коробление (деформация) деталей меньше, чем при объемной.

Поверхностной закалке подвергают детали машин (зубья колес, кулачки, валы и др.), изготовленные из углеродистых и низколегированных сталей марок 40, 45, 50, 40Х 40ХН 45Х и др.

Высокая твердость и прочность поверхностных слоев деталей после поверхностной закалки обеспечивают им высокую износостойкость и контактную прочность.

Отпуск - нагрев до температуры ниже интервала превращений, выдержка и последующее охлаждение для повышения вязких свойств, уменьшения термических остаточных напряжений и улучшения обрабатываемости резанием. Обычно применяют после закалки (нормализации) стальных отливок, поковок, проката и механически обработанных деталей.

В зависимости от температуры нагрева различают высокий отпуск (температура нагрева 500-670 °С), средний отпуск (250-450 °С) и низкий отпуск (140-230 °С). С увеличением температуры нагрева повышается пластичность стали после отпуска.

Химико-термическая обработка. При химико-термической обработке изменяется химический состав поверхностных слоев деталей, что позволяет получить мелкозернистую структуру, высокую твердость, прочность и износостойкость деталей.

Существует ряд способов такой обработки: цементация - насыщение поверхностных слоев стали углеродом; азотирование - насыщение азотом; цианирование - одновременное насыщение углеродом и азотом; борирование - насыщение бором и др. Глубина насыщения невелика, обычно 0,2— 1 мм.

Цементации подвергают детали из низкоуглеродистых легированных сталей 15, 20Х, 12Х2Н4А, 12ХНЗА, 18Х2Н4МА и др. Для изготовления азотируемых деталей обычно используют стали 38Х2МЮА, 38Х2Ю и др., а для цианируемых деталей - стали марок 15, 20, 45, 35Х, 40Х и др.

Ч У Г У Н Ы-

Чугунами называют железоуглеродистые сплавы с содержанием углерода свыше 2%. Чугуны имеют высокие литейные и невысокие пластические свойства в сравнении со сталями.

В зависимости от структуры чугуны подразделяют на белые, ковкие и серые.

Белый чугун, обладающий высокой твердостью и хрупкостью, обрабатывают резанием твердосплавным инструментом. Используют для изготовления тормозных колодок и других деталей, взаимодействующих с абразивом.

Ковкий чугун применяют для деталей, получаемых литьем, и не обрабатывают давлением из-за низкой пластичности. Он имеет высокую прочность (σв = 300 ÷ 630 МПа).

Серый чугун является основным литейным материалом в машиностроении. Его используют для изготовления деталей сложной конфигурации при отсутствии жестких требований к габаритам и массе (зубчатые колеса, валы, детали корпусов, шкивы ременных передач и т. д.). Имеет высокие литейные свойства, среднюю прочность (σв < 400 МПа), удовлетворительную износостойкость, высокую демпфирующую способность, хорошо обрабатывается резанием.

Серый чугун обозначается буквами СЧ и двухзначной цифрой, показывающей деленные приблизительно на 10 значения предела прочности при растяжении в МПа (например, СЧ 15 означает серый чугун с пределом прочности при растяжении 150 МПа).

Наибольшее применение имеют чугуны СЧ15 и СЧ20, используемые для получения отливок средней прочности, их массовая плотность ρ = 7 г/см3.

М Е Д Н ЫЕ С П Л А В Ы-

Медные сплавы разделяют на латуни и бронзы.

Латуни подразделяют, в свою очередь, на двойные (сплавы меди и цинка) и многокомпонентные (содержат дополнительно свинец, кремний, марганец и др.).

Латуни имеют хорошие технологические свойства (обрабатываются давлением, резанием, литьем), достаточную прочность (σв = 250 ÷ 350 МПа), хорошее сопротивление коррозии. Стоимость латуни в 5 раз и более превышает стоимость качественной стали.

Латунь в своем обозначении содержит букву Л, например, Л59, Л62, Л90 и др.

В машиностроении основное применение имеют сложные латуни ЛКС80-3-3, ЛМцС58-2-2 и др., используемые в узлах трения, а также для изготовления арматуры и т. д.

Бронзы, кроме основы — меди, содержат компоненты, определяющие их наименование. Различают бронзы оловянистые, свинцовистые, алюминиевые, бериллиевые и др.

Бронзы имеют высокие антифрикционные свойства, коррозионную стойкость и технологические свойства (имеются в виду литейные бронзы и бронзы, обрабатываемые давлением — алюминиевые, бериллиевые, кремнистые и др.).

Являясь важнейшим и дорогостоящим (примерно в 10 раз дороже стали) антифрикционным материалом, бронзы широко применяют в подшипниках скольжения, в червячных и винтовых колесах и др. Бронзы обозначают буквами Бр, буквами, показывающими наличие основных компонентов кроме меди (А — алюминий, Б — бериллий, Ж — железо, К — кремний, О — олово, Ц — цинк, Ф — фосфор и др.), и цифрами, показывающими среднее содержание в % соответствующих компонентов. Например, БрАЖ9 - 4 — это обозначение марки бронзы со средним содержанием алюминия 9% и железа 4%.

Б А Б Б И Т Ы-

Баббиты — сплавы на основе олова, свинца и кальция являются высококачественными хорошо прирабатывающимися антифрикционными подшипниковыми материалами. Их обозначают буквой Б и цифрой, выражающей содержание в процентах олова, или буквой, показывающей дополнительный компонент.

Очень высокая стоимость баббитов (в 20 раз и более превышающая стоимость качественной стали) ограничивает области их использования.

А Л Ю М И Н И Е В ЫЕ С П Л А В Ы-

Алюминиевые сплавы (литейные АЛ и деформируемые) имеют плотность ρ = 2,6 ÷ 2,9 г/см3 (почти в 3 раза меньшую, чем стали) и удельную прочность, приблизительно равную удельной прочности стали.

Основными литейными сплавами являются сплавы с кремнием - силумины (АЛ2, АЛ4, АЛ5, АЛ9 и др.), имеющие после закалки σв = 170 ÷ 250 МПа. Обладая высокими литейными свойствами и хорошей обрабатываемостью резанием, они широко применяются для изготовления сложных деталей корпусов машин.

Деформируемые сплавы марок АМц, АМг и др. (термически неупрочняемые), а также термически упрочняемые сплавы алюминия с медью и магнием (дуралюмины Д1, Д16 и др.) имеют σв = 350 ÷ 430 МПа и используются для изготовления обработкой давлением и резанием корпусов, трубопроводов, заклепок, сепараторов подшипников и других деталей машин (в особенности транспортных).

М А Г Н И Е В ЫЕ С П Л А В Ы-

Основное применение благодаря малой плотности (ρ = 1,8 г/см3) и высоким литейным свойствам имеют литейные сплавы МЛ (МЛЗ, МЛ4, МЛ5 и др.), которые после термообработки дают σв = 200 ÷ 230 МПа, σт = 150 ÷ 180 МПа.

Их применяют для изготовления деталей корпусов агрегатов.

Т И Т А Н О В ЫЕ С П Л А В Ы-

Сплавы титана с алюминием и медью и другими присадками (ВТЗ-1, ВТ5, ВТ9, ВТ16, ВТ22 и др.) имеют после термообработки высокую прочность (σв = 900 ÷ 1300 МПа) и малую плотность (ρ = 4,5 г/см3), высокую коррозионную стойкость. Их используют для изготовления корпусов, трубопроводов, крепежных деталей, заклепок и других деталей изделий авиационно-космической техники, судостроения, химической и пищевой промышленности.

П Л А С Т М А С С Ы-

Это материалы на основе высокомолекулярных органических соединений (смол), являющихся связующими. Они имеют 40 — 70% «несущих» компонентов (наполнителя) в виде волокон (текстильных, стеклянных, асбестовых), ткани, бумаги, муки (древесной, минеральной) и др. Благодаря малой плотности (ρ = 1,1 ÷ 2,3 г/см3), высокой коррозионной стойкости и сравнительно высокой прочности (σв = 60 ÷ 300 МПа) пластмассы применяют (часто взамен металлов) для изготовления корпусов, червячных колес и т. д.

К числу наиболее распространенных материалов относятся:

а) термореактивные слоистые пластмассы: текстолит (наполнитель — хлопчатобумажная ткань), гетинакс (наполнитель — листы бумаги), асботекстолит, стеклопластики и древопластики;

б) термореактивные пластмассы (волокнит, фенопласт и др.), используемые для изготовления прессованием рукояток, шкивов, ступиц колес и других деталей изделий бытовой техники;

в) термопластичные пластмассы (органическое стекло — плексиглас, винипласт, фторопласт и др.) используются для изготовления стекол, труб, защитных пленок и др.;

г) полиамиды (капрон, найлон и др.) применяют для формовки деталей сложной конфигурации (ремни, зубчатые колеса и др.).

Р Е З И Н А -

Материал на основе натурального или искусственного каучука имеет высокую упругую податливость (малую жесткость), хорошо гасит колебания, сопротивляется истиранию и т. д.

В зависимости от назначения резина изготовляется мягкой (для шин), пористой (для амортизаторов) и жесткой (эбонит — для изготовления электротехнических изделий).

Для повышения несущей способности резинотехнических изделий их «армируют» текстильными или стальными элементами (тканью, шнурами, лентой). Такую резину используют для изготовления автопокрышек, ремней, рукавов и др.

Список литературы

Анурьев В.И. Справочник конструктора машиностроителя. -М., 1979. Т. I и П.

Биргер И.А., Шор Б.Ф., Иосилевич Г.Б. Расчет на прочность деталей машин. -М., 1979.-704с.

Гузенков П. Г. Детали машин. М., 1986.

Детали машин: Справочник/Под ред. Н. С. Ачеркана. -М., 1968. Т. I, II и III.

Детали машин: Атлас/Под ред. Д. Н. Решетова. -М., 1992.

Дьяченко С.К., Столбовой С.З. Детали машин (атлас). -Киев, 1964.

Детали машин /В. А. Добровольский, К. И. Заблонский, С. Л. Зак и др. -М., 1972.

Дмитриев В. А. Детали машин. -М., 1970.

Трение, изнашивание и смазка. Справочник/Под ред. И. В. Крагельского и В. В. Алисина. -М., 1978. Т. I и II.

ИвановМ. Н., Иванов В. Н. Детали машин: Курсовое проектирование.- М., 1975.

Кудрявцев В. Н. Детали машин. -М., 1980.

Орлов П. И. Основы конструирования. М., 1977. Т. I, II и III.

Подшипники качения: Справочник/Под ред. В.Н.Нарышкина и Р. В. Коросташевского. М., 1984.

Решетов Д. Н. Детали машин. М., 1989. -496с.

Феодосьев В. И. Сопротивление материалов. М., 1981.

Якушев А. И. Взаимозаменяемость, стандартизация и технические измерения. М.. 1974.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-10-17 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: