Центробежная сила инерции.




Силы инерции при поступательном движении.

Ускорение точки в неинерциальной системе отсчета можно в соответствии с (2) представить в виде:

Подставим выражение (3) в уравнение (1) и получим:

Это и есть уравнение движения материальной точки относительно неинерциальной системы отсчета. Если в неинерциальной системе отсчета определять силу как вектор, равный произведению массы материальной точки на ее ускорение в этой системе отсчета, то правая часть уравнения (6.4) и является силой, действующей на материальную точку, движущуюся ускоренно в неинерциальной системе отсчета. Эта сила слагается из двух существенно различных составляющих. Первая оставляющая является результатом взаимодействия тел и проявляется в инерциальной системе отсчета.

Совсем иной характер имеет составляющая – . Она возникает не из-за взаимодействия тел, а из-за ускоренного движения системы отсчета. Она называется поступательной силой инерции. При переходе к другой ускоренно движущейся системе отсчета меняются и силы инерции. Эти силы инерции отличаются от настоящих сил, возникающих при взаимодействии тел. Второе отличие состоит в том, что силы инерции не подчиняются закону действия и противодействия (третьему закону Ньютона).

При описании движения тел относительно ускоренно движущейся поступательно системы отсчета наряду с силами, обусловленными взаимодействием тел друг с другом, необходимо учитывать так называемые силы инерции . Эти силы следует полагать равными произведению массы тела на взятое с обратным знаком ускорение движущейся неинерциальной системы отсчета относительно инерциальной системы:

Соответственно, уравнение движения в неинерциальной системе отсчета будет иметь вид

Существует много явлений, которые могут быть интерпретированы как проявление силы инерции. Когда поезд набирает скорость, пассажиры в вагоне испытывают действие силы, направленной против движения поезда. Это и есть сила инерции. Силы инерции вызывают перегрузки, действующие на летчика при больших ускорениях самолета. Если в ускоренно движущемся вагоне висит шарик массы m, то сила инерции отклоняет его в сторону, противоположную ускорению (рис.1).

Рис.1

 

Нить отклоняется на такой угол, чтобы результирующая двух сил () сообщала шарику ускорение , с которым движется вагон. Относительно системы отсчета, связанной с вагоном, шарик покоится. Это можно объяснить, если ввести силу инерции , уравновешивающую результирующую двух сил и .

Введение сил инерции дает возможность описывать движение тел в любых системах отсчета с помощью одних и тех же уравнений движения.

Силы инерции имеют характерные особенности: они не отражают взаимодействие тел, а обусловлены характером неинерциальных систем отсчета, поэтому для сил инерции неприменим третий закон Ньютона. Характерным свойством сил инерции является их пропорциональность массе тела. Благодаря этому свойству силы инерции оказываются аналогичными силам тяготения. Движение тел под действием сил инерции сходно с движением в гравитационном поле. В качестве примера можно привести невесомость, возникающую в свободно падающем лифте. В свободно падающем лифте вес тела массой m всегда равен нулю: .

Действительно:

Рассмотрим силы инерции, возникающие во вращающихся системах отсчета.

 

Центробежная сила инерции.

Рассмотрим два случая проявления центробежной силы инерции.

Случай 1. Рассмотрим вращающийся диск с закрепленными на нем стойками с шариками, подвешенными на нитях (рис.2). При вращении диска с постоянной угловой скоростью w шарики отклоняются на некоторый угол, тем больший, чем дальше он находится от оси вращения. Относительно инерциальной системы отсчета (неподвижной) все шарики движутся по окружности соответствующего радиуса R, при этом на шарики действует результирующая сила (рис.3).

Рис.2

 

Рис.3

 

Согласно второму закону Ньютона

учитывая, что F / P =tgα, можно записать

т.е. угол отклонения шарика зависит от угловой скорости и от его удаления от оси вращения диска.

Относительно неинерциальной системы отсчета, связанной с вращающимся диском, шарик находится в покое.

Это возможно в том случае, если сила (8) уравновешена силой инерции , называемой центробежной силой инерции:

 

Случай 2. Рассмотрим диск, вращающийся вокруг перпендикулярной к нему вертикальной оси z с угловой скоростью ω. Вместе с диском вращается надетый на тонкую спицу шарик, соединенный с центром диска пружиной (рис. 4).

Рис.4

 

Шарик занимает на стержне некоторое положение, при котором сила натяжения пружины (она будет центростремительной) оказывается равной произведению массы шарика m на его ускорение:

где – нормальное ускорение на шарике; r – расстояние от оси вращения до центра шарика.

Относительно системы отсчета, связанной с диском, шарик покоится. Это формально можно объяснить тем, что кроме силы упругости на шарик действует сила инерции, модуль которой равен силе упругости (7):

Сила инерции направлена вдоль радиуса от центра диска. Силу инерции (8), возникающую в равномерно вращающейся системе отсчета, называют центробежной силой инерции. Эта сила действует на тело во вращающейся системе отсчета, независимо от того, покоится тело в этой системе или движется относительно нее со скоростью . Если положение тела во вращающейся системе отсчета характеризовать радиус-вектором , то центробежную силу можно представить в виде

 

где – компонента радиус-вектора, направленная перпендикулярно оси вращения.

Центробежные силы, как и всякие силы инерции, существуют только в ускоренно движущихся (вращающихся) системах отсчета и исчезают при переходе к инерциальным системам отсчета.

Действию центробежной силы подвергается, например, пассажир в движущемся автобусе на поворотах. Если в центробежной машине подвесить на нитях несколько шариков и привести машину в быстрое вращение, то центробежные силы инерции отклонят шарики от оси вращения. Угол отклонения тем больше, чем дальше шарик отстоит от оси. Центробежные силы используются в центробежных сушилках для отжима белья, в сепараторах для отделения сливок от молока, в центробежных насосах, центробежных регуляторах и т.д. Их надо учитывать при проектировании быстровращающихся деталей механизмов.

 

Сила Кориолиса.

При движении тела относительно вращающейся системы отсчета, кроме центробежной силы, появляется еще одна сила, называемая силой Кориолиса.

Рассмотрим рис.5. Шарик массой m движется прямолинейно со скоростью от центра к краю диска. Если диск неподвижен, то шарик попадает в точку М, а если диск вращается с постоянной угловой скоростью ω, то шарик попадает в точку N. Это обусловлено тем, что на шарик действует сила Кориолиса.

Рис.5

 

Появление силы Кориолиса можно обнаружить, если рассмотреть пример с шариком на спице на вращающемся диске, но без пружины. Для того чтобы заставить шарик двигаться с некоторой скоростью вдоль спицы, необходима боковая сила. Шарик вращается вместе с диском с постоянной угловой скоростью w, поэтому его момент импульса равен:

Если шарик будет перемещаться вдоль спицы с постоянной скоростью , то с изменением момент импульса шарика изменится. А это означает, что на движущееся во вращающейся системе тело должен действовать некоторый момент силы, который согласно основному уравнению динамики вращательного движения равен

Для того чтобы заставить шарик двигаться по вращающемуся диску вдоль радиальной прямой со скоростью , необходимо прилагать боковую силу

направленную перпендикулярно . Относительно вращающейся системы (диска) шарик движется с постоянной скоростью.

Это можно объяснить тем, что сила уравновешивается приложенной к шарику силой инерции , перпендикулярной к скорости (рис.6). Сила и есть Кориолисова сила инерции. Она определяется выражением

 

Рис.6

 

С учетом направления силу Кориолиса можно представить в виде

Сила Кориолиса всегда перпендикулярна скорости тела . Во вращающейся системе отсчета при = 0 эта сила отсутствует. Таким образом, Кориолисова сила инерции возникает только тогда, когда система отсчета вращается, а тело движется относительно этой системы. Действием силы Кориолиса объясняется ряд эффектов, наблюдающихся на поверхности Земли, например, поворот плоскости колебаний маятника Фуко относительно Земли, отклонение к востоку от линии отвеса свободно падающих тел, размытие правого берега рек в северном полушарии и левого в южном, неодинаковый износ рельсов при двухколейном движении.

Домашнее задание:

Выполните конспект



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2021-12-08 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: