На лабораторной установке (рис.7) тигель 3 с рабочим веществом 4 установлен над нагревателем 2. На штативе 5 укреплена термопара 1. Термопара представляет собой два спаянных проводника из разных металлов. Если спаи 12 и II имеют разную температуру, то на концах термопары (клеммы 8) возникает термоЭДС Е. Один конец термопары (12) погружен в нагреваемое рабочее вещество (металл), а другой (11) - имеет температуру окружающего воздуха T1, измеряемую термометром 9. ТермоЭДС прямо пропорциональна разности температур горячего T2 и холодного T1 спаев
Коэффициент пропорциональности определяется по градуировочной кривой термопары (рис. 8). Величина термоЭДС измеряется цифровым вольтметром 10 через равные промежутки времени после нагревания тигля с рабочим веществом, а также при охлаждении рабочего вещества. Температура Т2, вычисляется по формуле T2 = ∆T + T1.
Порядок выполнения работы
1. Соединить проводниками клеммы 8 термопары со входом цифрового вольтметра. Положить в нагреватель не более четверти таблетки сухого горючего. Включить цифровой вольтметр.
2. Зажечь сухое горючее, включить секундомер и производить измерение ЭДС через каждые 10 с.
3. После того как будет отмечено несколько одинаковых значений ЭДС (соответствующих плавлению металла), продолжать измерения, пока температура не начнет устойчиво повышаться. Через 3-4 измерения потушить (задуть) сухое горючее.
4. Снять кривую охлаждения. Для этого измерять Е, через каждые 10 с по мере охлаждения металла.
5. По графику градуировки термопары определить разность температур ∆Т для каждого значения ЭДС при плавлении и кристаллизации металла.
6. Определить комнатную температуру T1 и, прибавив ее к значениям ∆T, полученным из графика, найти и записать температуру металла, соответствующую каждому измерению.
|
7. Построить графики зависимости температуры T металла от времени при плавлении и кристаллизации.
8. По графикам определить среднюю температуру плавления и кристаллизации.
9. По температуре плавления и данным табл.2 идентифицировать рабочее вещество и найти его удельную теплоту плавления.
10. По формуле (39) определить теплоту плавления для данной массы рабочего вещества (m = 85 г) и, используя соотношение (38), вычислить изменение энтропии фазового перехода для случая плавления и кристаллизации.
II. Определить погрешности изменения энтропии.
Таблица 2
Металл | Тпл, К | rn, кДж/кг |
I. Алюминий | 931,1 | 396,79 |
2. Висмут | 54,4 | |
3. Олово | 504,86 | 61,12 |
4. Свинец | 600,4 | 20,93 |
5. Серебро | 92,09 | |
6. Сурьма | 903,5 | 101,72 |
7. Цинк | 692,5 | 111.35 |
8. Сплав: олово 61 %, | ||
свинец 39 % | 45.44 | |
9. Сплав: олово 40 %, | ||
свинец 60 % | ||
10. Сплав: олово 30 %, | ||
свинец 70 % |
Контрольные вопросы и задания
1. Что называется фазовым переходом первого рода, второго рода?
2. Что называется плавлением и кристаллизацией твердых тел.
3. Раскройте сущность физического смысла изменения энтропии при плавлении и кристаллизации твердых тел.
4. Какие системы называют гомогенными и гетерогенными? Что называется фазой в термодинамике?
5. Объясните ход температурной кривой при плавлении и кристаллизации?
6. Что называется удельной теплотой плавления твердого тела? Как она определяется?
|
7. ИЗМЕРЕНИЕ КОЭФФИЦИЕНТА ЛИНЕЙНОГО РАСШИРЕНИЯ МЕТАЛЛА
Цель работы
Определить сопротивление не нагретой и нагретой металлической проволоки, ее удлинение при нагревании и коэффициент линейного расширения.
Приборы и принадлежности
Нихромовая проволока (Ni 90 %, Сr 10 %), источник питания постоянного тока, вольтметр, амперметр, пружина, шкала для измерения длины проволоки.
Теоретическое введение
Опыт показывает, что с повышением температуры происходит расширение твердя тел, называемое тепловым расширением. Для характеристики этого явления введены коэффициенты линейного и объемного расширения. Пусть l0 - длина тела при температуре 0 ˚С. Удлинение этого тела ∆ l при нагревании его до температуры t°С пропорционально первоначальной длине l0 и температуре:
где α - коэффициент линейного расширения, характеризующий относительное удлинение ∆ l/l, происходящее при нагревании тела на 1 К.
Длина тела при температуре t
отсюда
Тепловое расширение большинства твердых тел весьма незначительно. Поэтому длина l0 при 0 °С очень мало отличается от длины l при другой температуре t, например комнатной. Поэтому в выражении коэффициента линейного расширения (41) l0 можно заменить на l1, а l - на длину l2 при температуре t2, значительно большей, чем t1:
Причина расширения твердых тел при нагревании - возрастание амплитуды тепловых колебаний атомов. График зависимости потенциальной энергии взаимодействия соседних атомов от расстояния между их центрами r приведен на рис. 9. Пунктиром показан уровень полной энергии E взаимного колебания атомов при данной температуре. При данной энергии Е расстояние между атомами при тепловых колебаниях изменяется от r1 до r2. Если r0<r<r1 (атомы сближаются), между атомами действуют силы отталкивания. Когда r=r0, полная энергия равна кинетической энергии теплового колебательного движения. При уменьшении r до r1 происходит переход кинетической энергии в потенциальную энергию взаимодействия атомов. Далее под действием сил отталкивания атом движется в сторону увеличения r. Его кинетическая энергия возрастает, а потенциальная - уменьшается. Когда r становится больше r0, возникают силы притяжения между атомами, кинетическая энергия атома уменьшается, а потенциальная увеличивается. В точке r=r2, полная Е энергия переходит в потенциальную. Далее под действием сил притяжения атомы начинают сближаться И весь процесс колебаний атома между точками r1 и r2 повторяется.
|
Как видно из рис.9, вследствие несимметричности кривой и(r) среднее расстояние между соседними атомами при данной температуре
больше, чем r0, и возрастает с ростом температуры, так как увеличивается полная энергия атома.
Описание лабораторной установки и метода измерений.
Схема лабораторной установки приведена на рис. 10.
Нихромовая проволока 1 закреплена между клеммами 2, 3, причем клемма 3 соединена с растягивающей пружиной 4. По проволоке течет постоянный ток. Сила тока I измеряется амперметром A, а напряжение U вольтметром V. По закону Джоуля - Ленца в проводнике, по которому течет ток, выделяется тепло
зависящее от времени его прохождения t, сопротивления проводника R и силы тока I. Проводник нагревается, сопротивление металла увеличивается с ростом температуры по закону
где R1 - сопротивление проводника при комнатной температуре t1 °С;
R2 - его сопротивление при нагревании до температуры t2 °С;
β - температурный коэффициент сопротивления нихромовой проволоки,
Из соотношения (43) можно определить разность температур
зная сопротивления R1 и R2.
Сопротивление R1, определяется по формуле
где ρ - удельное сопротивление нихрома при t1 = 20 °С; ;
l1 - длина проволоки при комнатной температуре, м, l1 = 0,34; d - ее диаметр, мм, d = 0,4.
Сопротивление проволоки R2 при температуре t2 определяется по закону Ома для участка цепи
Удлинение проволоки при нагревании измеряется по шкале 5.