Синаптическая базальная мембрана и формирование синаптической специализации




 

Для дальнейшего исследования природы сигналов, ассоциированных с синаптической базальной мембраной, мышцы повреждали, нерв раздавливали, а регенерацию мышечного волокна предотвращали рентгеновским облучением. Регенерирующие аксоны росли к исходным синаптическим зонам, что выявлялось окраской на холинэстеразу, и формировали активные зоны для освобождения медиатора точно напротив участков базальной мембраны, связанных со вторичными синаптическими складками, — и все это происходило в отсутствие клеточных элементов постсинаптической мишени (рис.3D).

В параллельной серии экспериментов МакМахан и его коллеги продемонстрировали, что синаптическая базальная мембрана в регенерирующих мышечных волокнах содержит факторы, запускающие дифференцировку постсинаптической мембраны. Мышцы повреждались, как было описано ранее, а реиннервация предотвращалась удалением большого сегмента нерва. При регенерации новые мышечные волокна образовывали вторичные складки и кластеры АХ рецепторов и ацетилхолинэстеразы точно в зоне контакта с исходной синаптической базальной мембраной (рис. 4). Таким образом, сигналы, ассоцированные с синаптической базальной мембраной, при регенерации могут инициировать формирование синаптических специализаций как в мышечных волокнах, так и в нервных окончаниях.

Идентификация агрина

 

Для идентификации сигнала, связанного с базальной мембраной и инициирующего постсннаптическую дифференцировку, МакМахан и его коллеги использовали морского ската Torpedo califomica. Из электрических органов этого животного, родственных скелетной мышце, они приготовили экстракты, содержащие базальные мембраны. Добавленные к культуре мышечных волокон, экстракты симулировали эффекты синаптической базальной мембраны на регенерацию мышечных волокон, а именно индуцировали формирование кластеров АХ рецепторов вместе с другими компонентами постсинаптической мембраны (рис. 5).

Активный компонент экстрактов, названный агрином, был очищен и охарактеризован, а у цыпленка, крысы и ската клонирована соответствующая кДНК.

 

Рис. 4. Базальная мембрана и регенерация синапсов. (А) Микрофотография нормального нервно-мышечного синапса лягушки, окрашенного рутением красным, показывающая базальную мембрану, погруженную в постсинаптические складки и окружающую шванновскую клетку (S) и нервное окончание (N). (В) Изображение кожно-грудной мышцы, показывающее замороженный (справа) или перерезанный (слева) участок, с целью вызвать локальное повреждение мышечных волокон. (С) Замораживание приводит к дегенерации и фагоцитозу всех клеточных элементов нервно-мышечного соединения, оставляя целой только базальную мембрану мышечного волокна и шванновской клетки. Новые нервно-мышечные синапсы создаются регенерирующими аксонами и мышечными волокнами. (D) Нерв и мышца были повреждены, регенерация мышечных волокон предупреждена рентгеновским облучением. В отсутствие мышечных волокон аксоны регенерировали, восстанавливали связь с исходными синаптическими зонами и формировали активные зоны.

 

Результаты гибридизации in situ и иммуногистохимических исследований продемонстрировали, что агрин синтезируется мотонейронами, транспортируется по аксонам и, освобождаясь, индуцирует дифференцировку постсинаптического аппарата в развивающихся нервно-мышечных синапсах. Затем агрин становится частью синаптической базальной мембраны, где участвует в сохранении постсинаптического аппарата и запускает дифференцировку во время регенерации.

 

Рис. 5. Аккумуляция AX рецепторов и ацетилхолинэстеразы в исходных синаптических зонах мышечных волокон, регенерирующих в отсутствие нерва. Мышца была заморожена, как на рис. 24.13В, но регенерация нерва была блокирована. Новые мышечные волокна сформировались в пределах оболочек базальной мембраны. (А и В) Ауторадиография регенерированной мышцы с окраской на холинэстераэу, для того чтобы выделить исходную синаптическую зону (в фокусе в части А), и помеченной радиоактивным -бунгаротоксином, чтобы определить положение АХ рецепторов (серебряные зерна в фокусе в части В). (С) Электронная микрофотография исходной синаптической зоны в регенерированной мышце, отмеченная пероксидазой хрена (HRP), конъюгированной с -бунгаротоксином. Распределение АХ рецепторов обнаруживается по высокой плотности продукта реакции с HRP, который позволяет различать поверхность мышечного волокна и синаптические складки. (D) Электронная микрофотография исходной синаптической зоны в регенерирующей мышце с окраской на холинэстеразу. Исходная холинэстераза деградировала после заморозки мышцы. Таким образом, выявляемый продукт реакции обусловлен холинэстеразой, синтезированной и аккумулированной в исходной синаптической зоне регенерирующим мышечным волокном.  

 

Специфичный для мышцы рецептор тирозинкиназы, называемый MuSK, образует часть агринового рецептора. Активация MuSK инициирует внутриклеточное фосфорилирование, что служит пусковым сигналом для агрегации АХ рецепторов.

 

Литература:

 

1. Sanes, J. R., and Lichtman, J.W. 1999. Development of the vertebrate neuromuscular junction. Annu. Rev. Neurosci. 22: 389-442.

2. Song, H-J., and Poo, M-M. 1999. Signal transduc-tion underlying growth cone guidance by diffusible factors. Curr. Opin. Neurobiol. 9: 355-363.

3. Walsh, F. S., and Doherty, P. 1997. Neural cell adhesion molecules of the immunoglobulin super-family: Role in axon growth and guidance. Annu Rev. Cell Dev. ВЫ. 13: 425-456.

4. Zigmond, M.J., Bloom, F. E., Landis, S.C., Roberts, J.L., and Squire, L. R. (eds.). 1999. Fundamental Neuroscience. Academic Press, New York.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-03-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: