Лекция 3. Основные требования к SCADA-системам и их возможности. Аппаратные и программные средства SCADA-систем
Рассматриваемые вопросы:
1. Основные требования к SCADA-системам.
2. Основные возможности современных SCADA-пакетов.
3. Тенденции развития аппаратных и программных средств SCADA-систем.
Основные требования к SCADA-системам
К SCADA-системам предъявляются следующие основные требования:
n надежность системы;
n безопасность управления;
n открытость, как с точки зрения подключения различного контроллерного оборудования, так и коммуникации с другими программами;
n точность обработки и представления данных, создание богатых возможностей для реализации графического интерфейса;
n простота расширения системы;
n использование новых технологий.
Требования безопасности и надежности управления в SCADA-системах включают:
n никакой единичный отказ оборудования не должен вызвать выдачу ложного выходного воздействия (команды) на объект управления;
n никакая единичная ошибка оператора не должна вызвать выдачу ложного выходного воздействия (команды) на объект управления;
n все операции по управлению должны быть интуитивно- понятными и удобными для оператора (диспетчера).
Основные возможности современных SCADA-пакетов
Исходя из требований, которые предъявляются к SCADA-системам, большинству современных пакетов присущи следующие основные возможности:
1. Автоматизированная разработка, позволяющая создавать ПО системы автоматизации без реального программирования.
2. Средства сбора и хранения первичной информации от устройств нижнего уровня.
3. Средства обработки первичной информации.
4. Средства управления и регистрации сигналов об аварийных ситуациях.
|
5. Средства хранения информации с возможностью ее постобработки (как правило, реализуется через интерфейсы к наиболее популярным базам данных).
6. Средства визуализации информации в виде графиков, гистограмм и т.п.
Тенденции развития аппаратных и программных средств SCADA-систем
Общие тенденции
Прогресс в области информационных технологий обусловил развитие всех 3-х основные структурных компонент систем диспетчерского управления и сбора данных - RTU, MTU и CS, что позволило значительно увеличить их возможности; так, число контролируемых удаленных точек в современной SCADA-системе может достигать 100 000 и более. На настоящий момент значение данного параметра практически не имеет ограничений.
Основная тенденция развития технических средств (аппаратного и программного обеспечения) SCADA - миграция в сторону полностью открытых систем. Открытая архитектура позволяет независимо выбирать различные компоненты системы от различных производителей; в результате - расширение функциональных возможностей, облегчение обслуживания и снижение стоимости SCADA-систем.
Удаленные терминалы
Главная тенденция развития удаленных терминалов (RTU) - увеличение скорости обработки и повышение их интеллектуальных возможностей. Современные терминалы строятся на основе микропроцессорной техники, работают под управлением операционных систем реального времени, при необходимости объединяются в сеть, непосредственно или через сеть взаимодействуют с интеллектуальными электронными датчиками объекта управления и компьютерами верхнего уровня.
|
Конкретная реализация RTU зависит от области применения. Для индустриальных и транспортных систем существует два конкурирующих направления в технике RTU - промышленные компьютеры и программируемые логические контроллеры (в русском переводе часто встречается термин «промышленные контроллеры») - PLC.
Промышленные компьютеры представляют собой, как правило, программно-совместимые с обычными коммерческими персональными компьютерами машины, но адаптированные для жестких условий эксплуатации - буквально для установки на производстве, в цехах, газокомпрессорных станциях и т.п. Адаптация относится не только к конструктивному исполнению, но и к архитектуре и схемотехнике, т.к. изменения температуры окружающей среды приводят к дрейфу электрических параметров.
В качестве операционной системы в промышленных РС, работающих в качестве удаленных терминалов, все чаще начинает применяться Windows NT, в том числе различные расширения реального времени, специально разработанные для этой операционной системы. Наиболее известными поставщиками промышленных компьютеров являются американские фирмы Xycom, Octagon Systems и тайваньские Advantech, Axiom.
Промышленные контроллеры (PLC) представляют собой специализированные вычислительные устройства, предназначенные для управления процессами (объектами) в реальном времени. Промышленные контроллеры имеют вычислительное ядро и модули ввода-вывода, принимающие информацию (сигналы) с датчиков, переключателей, преобразователей и контроллеров и осуществляющие управление процессом или объектом путем выдачи управляющих сигналов на приводы, клапаны, переключатели и другие исполнительные устройства. Современные PLC часто объединяются в сеть с помощью промышленных (индустриальных) шин (сетей), а программные средства, разрабатываемые для них, позволяют в удобной для оператора форме программировать и управлять ими или непосредственно, или через компьютер, находящийся на верхнем уровне SCADA-системы - диспетчерском пункте управления (MTU). Исследование рынка PLC показало, что наиболее развитыми архитектурой, программным обеспечением и функциональными возможностями обладают контроллеры фирм Siemens, Fanuc Automation, Allen-Bradley, Mitsubishi.
|
Много материалов и исследований по промышленной автоматизации посвящено конкуренции двух направлений - РС и PLC; каждый из авторов приводит большое количество доводов «за» и «против» по каждому направлению. Тем не менее, можно выделить основную тенденцию: там, где требуется повышенная надежность и управление в жестком реальном времени, применяются PLC. В первую очередь это касается применений в системах жизнеобеспечения (например, водоснабжение, электроснабжение), транспортных системах, энергетических и промышленных предприятиях, представляющих повышенную экологическую опасность. Индустриальные РС применяются преимущественно в менее критичных областях.
3.3.3. Каналы связи
Каналы связи для современных диспетчерских систем отличаются большим разнообразием. Выбор конкретного решения зависит от архитектуры системы, расстояния между диспетчерским пунктом (MTU) и RTU, числа контролируемых точек, требований по пропускной способности и надежности канала, наличия доступных коммерческих линий связи.
Тенденцией развития CS как структурного компонента SCADA-систем можно считать использование не только выделенных каналов связи, но также и корпоративных компьютерных сетей и специализированных промышленных сетей (индустриальных шин). В современных промышленных, энергетических и транспортных системах большую популярность завоевали промышленные сети - специализированные быстродействующие каналы связи, позволяющие эффективно решать задачу надежности и помехоустойчивости соединений на разных иерархических уровнях автоматизации.
3.3.4. Диспетчерские пункты управления
Главной тенденцией развития MTU является переход большинства разработчиков SCADA-систем на архитектуру «клиент-сервер», состоящую из 4-х функциональных компонент:
· User (Operator) Interface (интерфейс пользователя/оператора) - исключительно важная составляющая систем SCADA. Для нее характерны: а) стандартизация интерфейса пользователя вокруг нескольких платформ; б) все более возрастающее влияние Widows; в) использование стандартного графического интерфейса пользователя (GUI); г) технология объектно-ориентированного программирования; д) стандартные средства разработки приложений, наиболее популярные среди которых, - Visual Basic for Applications (VBA), Visual C++; е) появление вариантов программного обеспечения класса SCADA/HMI для широкого спектра задач. Объектная независимость позволяет интерфейсу пользователя представлять виртуальные объекты, созданные другими системами. Результат - расширение возможностей по оптимизации HMI-интерфейса.
· Data Management (управление данными) - отход от узкоспециализированных баз данных в сторону поддержки большинства корпоративных реляционных баз данных (Microsoft SQL, Oracle). Эта независимость данных изолирует функции доступа и управления данными от целевых задач SCADA, что позволяет легко разрабатывать дополнительные приложения по анализу и управлению данными.
· Networking & Services (сети и службы) - переход к использованию стандартных сетевых технологий и протоколов. Службы сетевого управления, защиты и управления доступом, передачи почтовых сообщений, сканирования доступных ресурсов могут выполняться независимо от кода целевой программы SCADA.
· Real-Time Servises (службы реального времени) - решают задачи реального и квазиреального времени. Данные службы управляют обменом информацией с RTU, осуществляют управление базой данных реального времени, оповещение о событиях, выполняют действия по управлению системой, передачу информации о событиях на интерфейс оператора.
Операционные системы
Рынок однозначно сделал выбор в пользу операционной системы Windows. Решающими для быстрого роста популярности Windows стала ее открытая архитектура и эффективные средства разработки приложений, что позволило многочисленным фирмам-разработчикам создавать программные продукты для решения широкого спектра задач.
Рост применения Windows в АСУ обусловлен в значительной степени появлением ряда программных продуктов, которые являются расширениями Windows для реального времени (например, RTX).
Следует отметить, что в SCADA-системах требование жесткого реального времени (т.е. способность отклика/обработки событий в четко определенные, гарантированные интервалы времени) относится, как правило, только к удаленным терминалам; в диспетчерских пунктах (MTU) происходит обработка/управление событиями (процессами, объектами) в режиме «мягкого» (квази-) реального времени.
Прикладное программное обеспечение
Ориентация на открытые архитектуры при построении систем диспетчерского управления и сбора данных позволяет разработчикам этих систем сконцентрироваться непосредственно на целевой задаче SCADA - сбор и обработка данных, мониторинг, анализ событий, управление, реализация HMI-интерфейса.
В последнее время на рынке появилось большое количество программных продуктов класса SCADA/HMI, позволяющих решать специфические задачи по управлению технологическими процессами, выходящие за рамки целевой задачи SCADA, такие как задачи автоматизации для дискретного производства, отдельных производственных процессов, автоматизации с использованием новейших информационных технологий и др.
Наибольших успехов в этом направлении добились компании Intellution и Wonderware.