фосфоглицериновый альдегид Фруктозо-6-фосфат




 

В результате 4,5 и 6-й реакции три молекулы пентозофосфата превращаются в две молекулы гексозофосфата и одну молекулу триозофосфата. Гексозофосфат снова подвергаться окислению.

Расчёты показывают, что если в пентозофосфатный цикл вступили шесть молекул глюкозо-6-фосфата, то из них образуются 6 молекул СО2 (исключительно за счёт окисления первого углеродного атома), 4 молекулы гексозофосфата и 2 молекулы тризофосфата. Последние молут изомеризоваться в гексозофосфат, который, в свою очередь, может подвергаться окислению и т.д.

Таким образом, в ходе пентозофосфатного цикла происходит не только окисление гексозофосфата с выделением СО2, но и постоянная регенерация гексозофосфата.

Реакции пентозофосфатного цикла показывают также, как образуются в растении триозы(цепь состоит из трёх атомов углерода), тетрозы (содержащие четыре атома углерода), пентозы (содержащие пять атомов углерода), гексозы (содержащие шесть атомов углерода) и гептозы (содержащие семь атомов углерода).[1 стр.224]

Пентозы могут образовываться при декарбоксилировании ULР уроновых кислот, чрезвычайно широко распространённых в растительных организмах в виде различного рода полиуронидов. Имеются экспериментальные данные, свидетельствующие о том, что ксилан синтезируется из ксилозы, которая образуется путём окисления глюкозы у шестого углеродного атома и последующего декарбоксилирования возникающей таким образом уроновой кислоты.

В опытах, проведённых на растениях пшеницы с помощью изотопной методики, было показано, что ксилан особенно легко образуется из глюкуроной кислоты. Результаты этих опытов подтверждают представление о том, что декарбоксилирование галактуроновой и глюкорбоновой кислот (или их полимеров) является важнейшим путём образования арабана и ксилана в растительном организме. Пентозы также могут образовываться путём декарбоксилирования кислот, образующихся при окислении молекул гексозы у первого углеродного атома. Так, при декарбоксилировании фосфоглюконовой кислот ферментными препаратами, выделенными из дрожжей, бактерий и высших растений, образуется фосфорный эфир кетопентозы- рибулозы: образовавшийся таким образом рибулозофосфат под действием рибозофосфат-изомеразы даёт рибозо-фосфат. При этом образуется рибозо-5-фосфат, превращающийся под влиянием фермента фосфорибомутозы в рибозо-1-фосфат. [2 стр.189]

Образовавшаяся рибулоза под действием особой изомеразы может

превращаться может превращаться в арабинозу, а специфическая изомераза

катализирует превращение рибулозо -5-фосфата в ксилулозо-5-фосфат. Таким образом, в результате ферментированных превращений фосфоглюконовой кислоты может образоваться ряд пентозон и их фосфорных эфиров.

Рассматривая описанный путь образования пентоз из гексоз, нужно отметить, что если уроновые кислоты чрезвычайно широко распространены в растениях, то глюконовая кислота и подобные ей другие кислоты в высших растениях не накапливаются. Они лишь промежуточные продукты пентозофосфатного пути окисления гексозофосфатов.

Наконец, образование пентоз можно представить как результат синтезирующего действия альдолазы. При взаимодействии фосфодиоксиацетона и фосфоглицеринового альдегида, происходящем под влиянием альдолазы, образуется фруктозодифосфат. Мейергофом показано, что под действием альдолазы фосфодиоксиацетон может обратимо конденсироваться не только с глицериновым альдегидом, но также с целым рядом других альдегидов, найденных в растениях, причём в результате этой реакции образуются пентозы. [ 2 стр 190]

Пентозофосфатный цикл представляет собой аэробное окисление. Кислород соединяется с водородом, который отщепляется от гликозидного атома углерода глюкозо-6-фосфата при окислении его в 6-фосфоглюконовую кислоту. При этом водород, прежде чем соединиться с кислородом, сначала восстанавливает НАДФ в НАДФН2, который и реагирует в дальнейшем с кислородом воздуха при посредстве цитохромов.

При окислении двух молекул глюкозо-6-фосфата поглащается две молекулы кислорода и выделяется две молекулы СО2 в процессе фотосинтеза.

Меченые атомы позволяют отличить, происходят ли начальные этапы окисления глюкозы при дыхании путём гликолиза или же посредством пентозофосфатного цикла. В том случае, когда субстратом дыхания является глюкоза, меченая по первому атому углерода (глюкозо-1-С14), окисление глюкозы по пентозофосфатному циклу будет сопровождаться выделением С14О2. При окислении глюкозы путём гликолиза в составе углекислоты, выделенной при дыхании, будет преобладать немеченая СО2.

В настоящее время для изучения путей окисления глюкозы попеременно используют глюкозо-1-С14 и глюкозо -6-С14 и определяют в составе выделенной углекислоты отношение С-6:С-1.

При окислении глюкозы через гликолиз и цикл трикорбоновых кислот отношение С6:С1+1, а при окислении по пентозофосфатному циклу С6:С1<1. При проведении эксперимента необходимо определять это отношение в первых пропорциях выделяющейся углекислоты, так как при полном окислении глюкозы отношение С6/С1 равно 1.

Опыты с растениями показали, что у старых тканей отношение С6/С1 меньше единицы (около0,5), а у молодых – около единицы. Следовательно, в молодых тканях глюкоза окисляется преимущественно через гликолиз и цикл трикорбоновых кислот, а в старых- через пентозофосфатный цикл. [3 срт129]

Итак:

Взаимные превращения фосфосахаров в пентозном цикле.

Окисление и декарбоксилирование шести молекул глюкозо-6-фосфата даёт 6 молекул пентозофосфата, которые способны к взаимным превращениям под действием трансальдолаз и транскетолаз. В качестве промежуточных соединений образуются фосфорилированные эфиры с 3-7 углеродными атомами. Из этих эфиров получаются четыре молекулы фруктозо-6-фосфата и две молекулы глицеральдегид-3-фосфата. Эти две молекулы конденсируют с образованием фосфорного эфира фруктозы или превращаются далее в геакциях гликолиза. Молекулы фруктозо-6-фосфата изомеризуются в глюкозо-6-фосфат и включаются в общий глюкозо-6-фосфатный путь, который далее испоьзуется в гликолизе или пентозном цикле. В равной мере это справедливо и для других промежуточных соединений. Шесть молекул глюкозо-6-фосфата в результате превращений в пентозном цикле дают 6 молекул СО2 и 6 молекул Н2О и вновь синтезируются пять молекул глюкозо-6-фосфата.

 


 

Список литературы

 

1. Гребинский С.О. Биохимия растений. под ред. И.Д.Головацкого. Учебное пособие для студентов биологических факультетов университетов. Издательство Львовского университета, 1967.

2. Кретович В.Л. Биохимия растений: Учебник для биол.факультетов ун-тов.-М.: Высш.школа, 1980.

3. Плешков Б.П.Биохимия сельскохозяйственных растений. 2-е доп.изд. Под ред.акад. ВАСХНИЛ В.М.Клечковского. М., «Колос», 1969

4. Материалы с сайта www.xumuk.ru/encyklopedia



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-10-17 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: