Образцы исследования элементарных функций, содержащих обратные тригонометрические функции
Примеры
Примеры: в нижеследующих примерах приведены образцы исследования элементарных функций, заданных формулами, содержащими обратные тригонометрические функции.
Пример №1. Исследовать функции arcsin(1/x) и arccos(1/y) и построить их графики.
Решение: Рассмотрим 1-ю функцию
|



|



|


|
| x | ≥ 1,
(- ∞; -1 ] U [ 1; + ∞)
| |||||
![]() | |||||
|
Функция нечетная
(f(x) убывает на пр. [0;1], f(y) убывает на пр. [0;π/2])
|

|
Д(f): (- ∞; -1 ] U [ 1; + ∞)
![]() | |||
![]() |
Пример №2. Исследовать функцию y=arccos(x2).
|
Д(f): [-1;1]
Четная
f(x) убывает на пр. [0;1]
|

| |||||
Пример №3. Исследовать функцию y=arccos2(x).
Решение: Пусть z = arccos(x), тогда y = z2
f(z) убывает на пр. [-1;1] от π до 0.
f(y) убывает на пр. [-1;1] от π2 до 0.
Пример №4. Исследовать функцию y=arctg(1/(x2-1))
Решение:
Д(f): (- ∞; -1) U (-1; 1) U (1; +∞)
Т.к. функция четная, то достаточно исследовать функцию на двух промежутках:
|
![]() ![]() | < x < | < x < | +∞ | ||||||
| -1 | ↘ | + ∞ - ∞ | ↘ | |||||
![]() ![]() ![]() ![]()
| - π/4 | ↘ | π/2 - π/2 | ↘ |
![]() | |
![]() |
|
|
Тригонометрические операции над аркфункциями
Тригонометрические функции от одного и того же аргумента выражаются алгебраически одна через другую, поэтому в результате выполнения какой-либо тригонометрической операции над любой из аркфункций получается алгебраическое выражение.
В силу определения аркфункций:
sin(arcsin(x)) = x, cos(arccos(x)) = x
(справедливо только для x є [-1;1])
tg(arctg(x)) = x, ctg(arcctg(x)) = x
(справедливо при любых x)
Графическое различие между функциями, заданными формулами:
y=x и y=sin(arcsin(x))
![]() | |||
![]() |
Сводка формул, получающихся в результате выполнения простейших тригонометрических операций над аркфункциями.
![]() |
Аргумент функция | arcsin(x) | arccos(x) | arctg(x) | arcctg(x) |
sin | sin(arcsin(x))=x | ![]() | ![]() | ![]() |
cos | ![]() | x | ![]() | ![]() |
tg | ![]() | ![]() | x | 1 / x |
ctg | ![]() | ![]() | 1 / x | x |
Справедливость всех этих формул может быть установлена при помощи рассуждений, приведенных ниже:
1. Т.к. cos2x + sin2x = 1 и φ = arcsin(x)
Перед радикалом следует взять знак “+”, т.к. дуга
принадлежит правой полуокружности (замкнутой)
, на которой косинус неотрицательный.
Значит, имеем
2. Из тождества следует:
3. Имеем
4.
Ниже приведены образцы выполнения различных преобразований посредством выведения формул.
Пример №1. Преобразовать выражение
Решение: Применяем формулу , имеем:
Пример №2. Подобным же образом устанавливается справедливость тождеств:
Пример №3. Пользуясь
Пример №4. Аналогично можно доказать следующие тождества:
Пример №5. Положив в формулах
, и
, получим:
,
Пример №6. Преобразуем
Положив в формуле ,
Получим:
Перед радикалами взят знак “+”, т.к. дуга принадлежит I четверти, а потому левая часть неотрицательная.
Соотношения между аркфункциями
Соотношения первого рода – соотношения между аркфункциями, вытекающими из зависимости между тригонометрическими функциями дополнительных дуг.
Теорема. При всех допустимых х имеют место тождества:
|
|



|
|
|


Соотношения второго рода – соотношения между аркфункциями, вытекающие из соотношений между значениями тригонометрических функций от одного и того же аргумента. Посредством соотношений 2-го рода производятся преобразования одной аркфункции в другую (но от различных аргументов).
Случай №1. Значения двух данных аркфункций заключены в одной и той же полуокружности.
Пусть, например, рассматривается дуга α, заключенная в интервале (-π/2; π/2).
Данная дуга может быть представлена как в виде арксинуса, так и в виде арктангенса. В самом деле, дуга имеет синус, равный sinα и заключена, так же как и α, в интервале (-π/2; π/2), следовательно
Аналогично можно дугу α представить в виде арктангенса:
А если бы дуга α была заключена в интервале (0; π), то она могла бы быть представлена как в виде арккосинуса, так и в виде арккотангенса:
Так, например:
Аналогично:
Формулы преобразования одних аркфункций в другие, значения которых содержаться в одной и той же полуокружности (правой или верхней).
1. Выражение
через арктангенс.
Пусть , тогда
Дуга , по определению арктангенса, имеет тангенс, равный
и расположена в интервале (-π/2; π/2).
Дуга имеет тот же тангенс и расположена в том же интервале (-π/2; π/2).
Следовательно,
(1)
(в интервале (-1: 1)
2. Выражение через арксинус.
Т.к. , то
(2)
в интервале
3. Выражение арккосинуса через арккотангенс. Из равенства следует тождество
(3)
Случай №2. Рассмотрим две аркфункции, значения которых выбираются в различных промежутках (например, арксинус и арккосинус; арккосинус и арктангенс и т.п.). Если аргумент какой-либо аркфункции (т.е. значение тригонометрической функции) положителен, то соответственно аркфункция (дуга), заключенная в первой четверти, может быть представлена при помощи любой аркфункции; так, например,
Поэтому каждая из аркфункций от положительного аргумента может быть выражена посредством любой другой аркфункции.
Значение какой-либо аркфункции от отрицательного аргумента принадлежит либо промежутку от -π/2 до 0, либо промежутку от π/2 до π и не может быть представлено в виде аркфункции, значение которой принадлежит другому (из этих двух) промежутку.
Так, например, дуга не может быть значением арксинуса. В этом случае
Формулы преобразования одних аркфункций в другие, значения которых выбираются в различных полуокружностях.
4. Выражение арксинуса через арккосинус.
Пусть , если
, то
. Дуга имеет косинус, равный
, а поэтому
При это равенство выполняться не может. В самом деле, в этом случае
, а для функции
имеем:
так как аргумент арккосинуса есть арифметический корень , т.е. число неотрицательное.
Расположение рассматриваемых дуг пояснено на рисунке:
![]() | ![]() |
Х>0 X<0
При отрицательных значениях Х имеем Х<0, а при положительных X>0, и
Таким образом, имеем окончательно:
если
, (4)
, если
![]() |
График функции
![]() | ||||||
|
Область определения есть сегмент [-1;1]; согласно равенству (4), закон соответствия можно выразить следующим образом:
![]() |


, если
5. Аналогично установим, что при имеем:
, если же
, то
Таким образом:
, если
(5)
, если
6. Выражение арктангенса через арккосинус. Из соотношения
при
имеем:
Если же х<0, то
Итак,
, если
(6)
, если
7. Выражение арккосинуса через арктангенс. Если , то
При имеем:
Итак,
, если
(7)
, если
8. Выражение арктангенса через арккотангенс.
, если х>0 (8)
,если x<0
При x>0 равенство (8) легко установить; если же x<0, то
.
9. Выражение арксинуса через арккотангенс.
, если
(9)
, если
10. Выражение арккотангенса через арксинус.
, если 0<x (10)
, если х<0
11. Выражение арккотангенса через арктангенс.
, если x>0 (11)
, если x<0
Примеры:
Пример №1. Исследовать функцию
Решение. Эта функция определена для всех значений х, за исключением значения х=0 (при х=0) второе слагаемое теряет смысл). Воспользовавшись формулой (8) получим:
|
y= 0, если x>0
-π, если x<0
На чертеже изображен график
данной функции
![]() |
Пример №2. Исследовать функцию
Решение: Первое слагаемое определено для значений , второе – для тех же значений аргумента. Преобразим первое слагаемое по формуле (4).
Т.к. , то получаем
,
откуда:
на сегменте [0;1]
Пример №3. Исследовать функцию
Решение: Выражения, стоящие под знаками аркфункций не превосходят по абсолютной величине единицы, поэтому данная функция определена для всех значений х. Преобразуем первое слагаемое по формуле (4).
Приняв во внимание равенство
, если
, если
получим:
y = 0, если
, если
Выполнение обратных тригонометрических операций над тригонометрическими функциями.
При преобразовании выражений вида
следует принимать во внимание в какой четверти находится аргумент х и в каком промежутке находится значение данной аркфункции. Рассмотрим, например, первое из данных выражений:
Согласно определению арксинуса, y – есть дуга правой полуокружности (замкнутая), синус которой равен sin x;
и
Областью определения функции служит интервал
, так как при всех действительных значениях х значение промежуточного аргумента
содержится на сегменте
. При произвольном действительном х значение y (в общем случае) отлично от значения х.
Так, например, при х=π/6 имеем:
но при х=5π/6
В силу периодичности синуса функция arcsin x также является периодической с периодом 2π, поэтому достаточно исследовать ее на сегменте [-π/2; 3π/2] величиной 2π.
Если значение х принадлежит сегменту [-π/2; π/2] то y=x, на этом сегменте график функции совпадает с биссектрисой координатного угла.
Если значение х принадлежит сегменту [π/2; 3π/2], то в этом случае дуга π-х принадлежит сегменту [-π/2; π/2]; и, так как
, то имеем y=π-х;
в этом промежутке график функции совпадает с прямой линией y=π-х. Если значение х принадлежит сегменту [3π/2; 5π/2], то, пользуясь периодичностью или путем непосредственной проверки, получим:
y=х-2π
Если значение х принадлежит сегменту [-3π/2; -π/2], то
y=-π-х
Если значение х принадлежит сегменту [-5π/2; -3π/2], то
y=х+2π
Вообще, если , то
y=х-2π k
и если , то
y=(π-х)+2π k
График функции представлен на рисунке. Это ломаная линия с бесконечным множеством прямолинейных звеньев.
Рассмотрим функцию
Согласно определению арккосинуса, имеем:
cos y = cos x, где
Областью определения данной функции является множество всех действительных чисел; функция периодическая, с периодом, равным 2π. Если значение Х принадлежит сегменту [0; π], то y = x. Если х принадлежит сегменту [π; 2π], то дуга 2π-х принадлежит сегменту [0; π] и , поэтому:
Следовательно, на сегменте [π; 2π] имеем y = 2π - x
Если х принадлежит сегменту [2π; 3π], то y = x - 2π
Если х принадлежит сегменту [3π; 4π], то y = 4π – x
Вообще, если , то y = x - 2π k
Если же , то y = -x + π k
Графиком функции является ломаная линия
![]() |
Формулы сложения
Формулы сложения дают выражения для суммы или разности двух (или нескольких) аркфункций через какую-либо данную аркфункцию. Пусть дана сумма аркфункций; над этой суммой можно выполнить любую тригонометрическую операцию. (....) В соответствии с этим дуга-функция может быть выражена посредством любой данной аркфункции. Однако в различных случаях (при одних и тех же аркфункциях) могут получаться различные формулы, в зависимости от промежутка, в котором берется значение рассматриваемой аркфункции.
Сказанное пояснено ниже на числовых примерах.
Примеры.
Пример №1. Преобразовать в арксинус сумму
Решение: эта сумма является суммой двух дуг α и β, где
;
В данном случае (т.к.
, а следовательно,
), а также
, поэтому
.
Вычислив синус дуги γ, получим:
Т.к. сумма γ заключена на сегменте [-π/2; π/2], то
Пример №2. Представить дугу γ, рассмотренную в предыдущем примере, в виде арктангенса. Имеем:
Откуда
Пример №3. Представить посредством арктангенса сумму
Решение: в данном случае (в отличие от предыдущего) дуга γ оканчивается во второй четверти, т.к. , а
. Вычисляем
В рассматриваемом примере , так как дуги γ и
заключены в различных интервалах,
, а
В данном случае
Пример №4. Представить дугу γ, рассмотренную в предыдущем примере, в виде арккосинуса.
Решение: имеем
Обе дуги γ и расположены в верхней полуокружности и имеют одинаковый косинус, следовательно, эти дуги равны:
Так как суммы и разности любых аркфункций можно выражать при помощи произвольных аркфункций, то можно получать самые разнообразные формулы сложения. Однако все эти формулы выводятся при помощи однотипных рассуждений. Ниже в качестве примеров даются некоторые из формул сложения, по этим образцам можно получить аналогичные формулы в различных прочих случаях.