План
1. Эволюция звезд.
2. Происхождение Солнечной системы.
Эволюция звезд.
Звезда — массивный газовый шар, излучающий свет и удерживаемый в состоянии равновесия силами собственной гравитации и внутренним давлением, в недрах которого происходят (или происходили ранее) реакции термоядерного синтеза. Ближайшей к Земле звездой является Солнце— типичный представитель спектрального класса G. Звезда — это огромный шар газа, который излучает свет и тепло при помощи реакций внутри своего ядра.
«Горит» же наше солнце из-за термоядерных реакция, синтеза водорода. Когда запас водорода кончается, звезда начинает умирать.
Спектральный класс - классификация звезд в первую очередь по температуре.
Так, самые горячий класс звезд «O» имеет температуру в 30 000—60 000К
Самый холодный класс «M» - 2000—3500К
Что же, а как же появляются на свет эти огромные огненные шары?
У всех звезд все начинается одинаково. Газово-пылевые облака, настолько большие, что при определенных условиях вещество в них начинает скапливаться не равномерно, сжиматься в более плотные фрагменты, из-за чего начинается гравитационный коллапс, из которого получаются протозвезды.
Протозвезда — Звезда, на завершающем этапе своего формирования, вплоть до момента загорания термоядерных реакций в ядре, благодаря которым звезды и «Горят». Протозвезды зачастую имеют пылевые облака. Образование звезды может растянуться на миллионы лет. Сжатие протозвезды будет продолжаться до тех пор, пока в ее недрах температура не дойдет до нужной величины, в миллионы градусов. Тогда в центре облака в полную силу начнут происходить термоядерные реакции превращения водорода в гелий. Выделяющаяся энергия будет нагревать газ, и его давление остановит сжатие. Это обязательно произойдет, если масса образующейся звезды составляет не меньше 0,07 массы Солнца. Иначе, звезда никогда не дойдет до нужной температуры и просто будет медленно становится белым карликом — мертвой звездой.
|
Звезды средней последовательности. Это молодость всех звезд. Время, когда они все таки начали свой процесс термоядерные реакции в ядре, и начали освещать все вокруг десятков астрономических единиц. Наше солнце, как раз на этом промежутки своей эволюции. Ему осталось примерно около 5 миллиардов лет, так как, средняя продолжительность жизни звезд такого же типа, как и наше солнце, около 10 миллиардов лет.
Зрелость. По прошествии времени, звезда начинает меняться, она истощает водородные ресурсы ядра. В больших и горячих звёздах это происходит гораздо быстрее, чем в маленьких и более холодных. Истощение запаса водорода приводит к остановке термоядерных реакций. Без давления, возникавшего в ходе этих реакций и уравновешивавшего внутреннюю гравитацию в теле звезды, звезда снова начинает сжиматься, как уже было ранее в процессе её формирования. Температура начинает расти вместе с давлением, но, в отличие от стадии протозвезды, гораздо сильнее. Коллапс продолжается до тех пор, пока при температуре приблизительно в 100 миллионов градусов, не начнутся термоядерные реакции с участием гелия.
Возобновившееся на новом уровне термоядерное «горение» вещества становится причиной чудовищного расширения звезды. Звезда «распухает», её размер увеличивается приблизительно в 100 раз. Так звезда становится красным гигантом, а фаза горения гелия продолжается около нескольких миллионов лет. Смерть звезды. Для звезд размером с солнце, снова наступает стадия сжатия — уже окончательная. Температура внутри ядра больше не способна подняться до уровня, необходимого для начала термоядерной реакции следующего уровня. Поэтому звезда сжимается до тех пор, пока силы гравитации не будут уравновешены давлением вырожденного электронного газа. Электроны, не участвовавшие в реакциях ядерного синтеза и свободно перемещаясь между ядрами, находящимися в процессе синтеза, на определенной стадии сжатия оказываются лишенными пространства и начинают «сопротивляться» дальнейшему сжатию звезды. Состояние звезды стабилизируется, и она превращается в вырожденного белого карлика, который будет излучать в пространство остаточное тепло, пока не остынет окончательно. Звезды более массивные, нежели Солнце, ждет куда более зрелищный конец. После сгорания гелия их масса при сжатии оказывается достаточной для разогрева ядра и оболочки до температур, необходимых для запуска следующих реакций — синтеза углерода, затем кремния, магния — и так далее, по мере роста ядерных масс. При этом при начале каждой новой реакции в ядре звезды предыдущая продолжается в ее оболочке. На самом деле, все химические элементы вплоть до железа, из которых состоит Вселенная, образовались именно в результате этого процесса, в недрах умирающих звезд этого типа. Но железо — это предел; оно не может служить топливом для реакций ядерного синтеза или распада ни при каких температурах и давлениях, поскольку как для его распада, необходим приток внешней энергии. В результате массивная звезда постепенно накапливает внутри себя железное ядро, не способное послужить топливом ни для каких дальнейших ядерных реакций. Как только температура и давление внутри ядра достигают определенного уровня, электроны начинают вступать во взаимодействие с протонами ядер железа, в результате чего образуются нейтроны. И за очень короткий отрезок времени свободные электроны буквально растворяются в протонах ядер железа, всё вещество ядра звезды превращается в сплошной сгусток нейтронов и начинает стремительно сжиматься в гравитационном коллапсе, поскольку противодействовавшее ему давление вырожденного электронного газа падает до нуля. Внешняя оболочка звезды, из под которой оказывается выбита всякая опора, обрушивается к центру. Энергия столкновения обрушившейся внешней оболочки с нейтронным ядром столь высока, что она с огромной скоростью отскакивает и разлетается во все стороны от ядра — и звезда буквально взрывается в ослепительной вспышке сверхновой звезды. За считанные секунды при вспышке сверхновой может выделиться в пространство больше энергии, чем выделяют за это же время все звезды галактики вместе взятые. Что же останется после сверхновой, зависит от ее массы. Если она около 10-30 солнечных масс продолжающийся гравитационный коллапс приводит к образованию нейтронной звезды, вещество которое сжимается до тех пор, пока не начинает давать о себе знать давление вырожденных нейтронов — иными словами, теперь уже нейтроны начинают противиться дальнейшему сжатию, требуя себе пространства. Это обычно происходит по достижении звездой размеров около 15 км в диаметре. В результате образуется быстро вращающаяся нейтронная звезда, испускающая электромагнитные импульсы с частотой ее вращения; такие звезды называются пульсарами. Наконец, если масса ядра звезды превышает 30 солнечных масс, ничто не в силах остановить ее дальнейший гравитационный коллапс, и в результате вспышки сверхновой образуется черная дыра.
|
|
Происхождение Солнечной системы.
Солнечная система состоит из центрального небесного тела – звезды Солнца, 8 больших планет, обращающихся вокруг него, их спутников, множества малых планет – астероидов, многочисленных комет и межпланетной среды. Большие планеты располагаются в порядке удаления от Солнца следующим образом: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун.
Согласно современным представлениям, планеты солнечной системы образовались из холодного газопылевого облака, окружавшего Солнце миллиарды лет назад. Такая точка зрения наиболее последовательно отражена в гипотезе российского ученого, академика О.Ю. Шмидта. Основная теория предполагает, что на месте нынешней Солнечной системы 5 млрд. лет тому назад существовало гигантское облако из газов и пыли. Оно имело огромные размеры, и было растянуто в пространстве на 6 млрд. км. Аналогичные пылевые облака существуют во многих уголках необъятной Вселенной. Их основная масса состоит из водорода. Это тот газ, из которого первоначально образуются звёзды. Затем, в результате термоядерной реакции, начинает выделяться инертный газ гелий. На долю остальных веществ приходится всего 2%. В какой-то момент пылевое облако получило внешний мощный импульс, представляющий собой огромный выброс энергии. Это могла быть ударная волна, сгенерированная взрывом сверхновой звезды. А возможно, что внешнего воздействия и не было. Просто за счёт закона притяжения облако стало уменьшаться в объёме и уплотняться. Данный процесс дал толчок гравитационному коллапсу. То есть произошло быстрое сжатие космической массы. В результате этого в центре возникло раскалённое ядро с очень высокой плотностью. Вся остальная масса рассосредоточилась по краям ядра. А так как в космосе всё вращается вокруг своей оси, то эта масса приобрела форму диска.
Ядро уменьшалось в размере, увеличивая свою температуру и плотность. В результате оно трансформировалось в протозвезду. А газовое облако вокруг ядра всё больше уплотнялось, пока в ядре температура и давление достигли критической величины. Это спровоцировало начало термоядерной реакции, и водород начал превращаться в гелий. С момента формирования туманности до запуска в протозвезде термоядерных реакций проходит в среднем 100000 лет. Протозвезда перестала существовать, а вместо неё возникла звезда под названием Солнце. После того, как значительная часть массы протозвездной туманности сформировало звезду, вокруг нее образуется протопланетный диск.
Постепенно молодая звезда и окружающее ее пространство остывает, что приводит к конденсации летучих веществ. Формируются пылевые частички, начинающие слипаться между собой. Так постепенно образуются планетазимали – «кирпичики» диаметром не более 1 км, из которых строятся планеты. Газопылевые облака, вращающиеся вокруг Солнца, стали стягиваться в плотные кольца. Планеты внутренней группы сформировались в тех областях протопланетного диска, где температура слишком высока для существования частиц льда и газа в диком состоянии. Поэтому эти объекты построены преимущественно из термоустойчивых горных пород. Планетазимали вначале быстро приращивают массу, достигая диаметра более километра. Далее крупные фрагменты притягивают к себе более мелкие, пока запас планетазималей в диске не окажется полностью исчерпан. Наступает стадия окончательного формирования Солнечной системы и приобретения ее телами определенной орбиты. Весь процесс возникновения планеты внутренней группы занял от 10 до 100 миллионов лет. Выражаясь совсем просто, можно сказать, что с ближайших ядер звезда «сдула» газовые оболочки. Так образовались маленькие планеты, вращающиеся рядом с Солнцем. Это Меркурий, Венера, Земля и Марс. Процесс сбора газа занимает несколько миллионов лет до истощения газовых запасов диска. Одной из заключительных стадий эволюции Солнечной системы стало образование главного пояса астероидов. Считается, что он образован из «строительного материала», оставшегося после формирования основных планет. В дальнейшем произошло возникновение спутников вокруг планет.
Естественные спутники образовались у большинства планет Солнечной системы, а также у многих других тел. Так возле Земли появилась Луна.
И, в конце концов, образовалось единое космическое сообщество, которое существует по сей день.
Вот таким образом наука объясняет происхождение Солнечной системы. Кстати, данная теория присуща и другим звёздным образованиям, которых в космосе бесконечное множество.
Контрольные вопросы
1. Что такое звезда?
2. То называется протозвездой?
3. Сколько планет в солнечной системе?
4. Что такое планетазимали?