Таблицы со справочниками




Основная таблица содержит записи в произвольном порядке. В дополнение к основной строится справочная или индексная таблица, записи которой состоят всего из двух полей: ключа и адреса в основной таблице. Поиск по ключу производится в справочной таблице. Если справочная таблица является таблицей прямого доступа, то потери памяти на пустые записи уменьшаются. Однако, очевидно, что в случае ключа-фамилии справочная таблица нас не спасет. Поэтому, обычно справочные таблицы содержат только фактические ключи и к ним применяются методы сортировки и поиска, описанные выше. Для таблиц прямого доступа и для таблиц со справочниками нет необходимости хранить ключ в составе записи основной таблицы, так как ключ может быть восстановлен по адресу записи либо по справочнику.

Метод остатков от деления

Простейшей хеш-функцией является деление по модулю числового значения ключа Key на размер пространства записи HashTableSize. Результат интерпретируется как адрес записи. Следует иметь в виду, что такая функция хорошо соответствует первому, но плохо – последним трем требованиям к хеш-функции и сама по себе может быть применена лишь в очень ограниченном диапазоне реальных задач. Однако операция деления по модулю обычно применяется как последний шаг в более сложных функциях хеширования, обеспечивая приведение результата к размеру пространства записей.

Если ключей меньше, чем элементов массива, то в качестве хеш-функции можно использовать деление по модулю, то есть остаток от деления целочисленного ключа Key на размерность массива HashTableSize, то есть:

Данная функция очень проста, хотя и не относится к хорошим. Вообще, можно использовать любую размерность массива, но она должна быть такой, чтобы минимизировать число коллизий. Для этого в качестве размерности лучше использовать простое число. В большинстве случаев подобный выбор вполне удовлетворителен. Для символьной строки ключом может являться остаток от деления, например, суммы кодов символов строки на HashTableSize.

Метод функции середины квадрата

Следующей хеш-функцией является функция середины квадрата. Значение ключа преобразуется в число, это число затем возводится в квадрат, из него выбираются несколько средних цифр и интерпретируются как адрес записи.

Метод свертки

Еще одной хеш-функцией можно назвать функцию свертки. Цифровое представление ключа разбивается на части, каждая из которых имеет длину, равную длине требуемого адреса. Над частями производятся определенные арифметические или поразрядные логические операции, результат которых интерпретируется как адрес. Например, для сравнительно небольших таблиц с ключами – символьными строками неплохие результаты дает функция хеширования, в которой адрес записи получается в результате сложения кодов символов, составляющих строку-ключ.

В качестве хеш-функции также применяют функцию преобразования системы счисления. Ключ, записанный как число в некоторой системе счисления P, интерпретируется как число в системе счисления Q>P. Обычно выбирают Q=P+1. Это число переводится из системы Q обратно в систему P, приводится к размеру пространства записей и интерпретируется как адрес.

Открытое хеширование

Основная идея базовой структуры при открытом (внешнем) хешировании заключается в том, что потенциальное множество (возможно, бесконечное) разбивается на конечное число классов. Для В классов, пронумерованных от 0 до В-1, строится хеш-функция h(x) такая, что для любого элемента х исходного множества функция h(x) принимает целочисленное значение из интервала 0,1,...,В-1, соответствующее классу, которому принадлежит элемент х. Часто классы называют сегментами, поэтому будем говорить, что элемент х принадлежит сегменту h(x). Массив, называемый таблицей сегментов и проиндексированный номерами сегментов 0,1,...,В-1, содержит заголовки для B списков. Элемент х, относящийся к i -му списку – это элемент исходного множества, для которого h(x)=i.

Если сегменты примерно одинаковы по размеру, то в этом случае списки всех сегментов должны быть наиболее короткими при данном числе сегментов. Если исходное множество состоит из N элементов, тогда средняя длина списков будет N/B элементов. Если можно оценить величину N и выбрать В как можно ближе к этой величине, то в каждом списке будет один или два элемента. Тогда время выполнения операторов словарей будет малой постоянной величиной, не зависящей от N.

 

Проблема коллизий в хешированных таблицах

Удачно подобранная функция хеширования может минимизировать число коллизий, но не может гарантировать их полного отсутствия. Ниже рассматриваются методы разрешения проблемы коллизий в хешированных таблицах.

ПОВТОРНОЕ ХЕШИРОВАНИЕ. Повторное хеширование предусматривает следующее: если при попытке записи в таблицу оказывается, что требуемое место в таблице уже занято, то значение записывается в ту же таблицу на какое-то другое место. Другое место определяется при помощи вторичной функции хеширования H2, аргументом которой в общем случае может быть и исходное значение ключа и результат предыдущего хеширования: r = H2(k,r`), где r` - адрес, полученный при предыдущем применении функции хеширования. Если полученный в результате применения функции H2 адрес также оказывается занятым, функция H2 применяется повторно - до тех пор, пока не будет найдено свободное место.

ПАКЕТИРОВАНИЕ. Записи таблицы объединяются в пакеты фиксированного, относительно небольшого размера. Функция хеширования дает на выходе не адрес записи, а адрес пакета. После нахождения пакета, в пакете выполняется линейный поиск по ключу. Пакетирование позволяет сгладить нарушения равномерности распределения ключей по пространству пакетов и, следовательно, уменьшить число коллизий, но не может гарантированно их предотвратить. Пакеты также могут переполняться. Поэтому пакетирование применяется как дополнение к более радикальным методам.

ОБЩАЯ ОБЛАСТЬ ПЕРЕПОЛНЕНИЙ. Для таблицы выделяются две области памяти: основная область и область переполнений. Функция хеширования на выходе дает адрес записи или пакета в основной области. При вставке записи, если ее "законное" место в основной области уже занято, запись заносится на первое свободное место в области переполнения. При поиске, если "законное" место в основной занято записью с другим ключом, выполняется линейный поиск в области переполнения.

РАЗДЕЛЬНЫЕ ЦЕПОЧКИ ПЕРЕПОЛНЕНИЙ. В структуру каждой записи добавляется еще одно поле - указатель на следующую запись. Через эти указатели записи с ключами-синонимами связываются в линейный список, начало которого находится в основной таблице, а продолжение - вне ее. При вставке записи в таблицу по функции хеширования вычисляется адрес записи (или пакета) в основной таблице. Если это место в основной таблице свободно, то запись заносится в основную таблицу. Если же место в основной таблице занято, то запись располагается вне ее. Память для такой записи с ключом-синонимом может выделяться либо динамически для каждой новой записи, либо для синонима назначается элемент из заранее выделенной области переполнения. После размещения записи-синонима поле указателя из записи основной таблицы переносится в поле указателя синонима, а на его место в записи основной таблицы записывается указатель на только что размещенный синоним.

 



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-12-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: