Если поместить систему в тепличные условия, она может стать хрупкой и неустойчивой.




К. С. Холлинг*, эколог

Устойчивость к внешним воздействиям можно называть по-разному — гибкостью, упругостью, эластичностью системы, в зависимости от того, термины какой области знаний мы используем. Для наших целей достаточно самых простых определений: «Способность восстановить свою форму, вернуться в исходное положение и состояние после внешнего воздействия. Приспособляемость. Способность быстро восстановить силы, образ действий, настрой и дру-

C. S. Hotting, ed., Adaptive Environmental Assessment and Management. Chichester UK: John Wiley & Sons, 1978. 34.

гие качества». Устойчивость и упругость — способность системы выдерживать различные внешние условия и продолжать существовать в изменчивом окружении. Противоположные качества — хрупкость и жесткость.

Способность выдерживать внешние воздействия возникает благодаря сложной структуре многочисленных обратных связей, которые могут разными способами восстанавливать систему даже после сильных потрясений и возмущений. Отдельно взятый балансирующий цикл обратной связи уже способен приводить запас в системе к какому-то конкретному значению. Устойчивость обеспечивается несколькими такими циклами, работающими за счет разных механизмов, в разных временных масштабах и с большой надежностью — если даже какой-то из циклов не сработает, вместо него начнет действовать другой.

Набор петель обратной связи, который позволит восстановить или построить заново в системе сами циклы обратной связи, — это устойчивость на более высоком уровне, сверхустойчивость, если угодно. Существует даже ультрасверхустойчивость, возникающая на основе обратных связей, которые могу самонастраиваться, иметь намерения, обучаться, создавать и эволюционировать в еще более сложные структуры, способные к самовосстановлению. Системы, умеющие все это, обладают способностью к самоорганизации — это второе удивительное качество, характерное для систем; о нем мы поговорим позже.

Человеческий организм — пример поразительно устойчивой системы. Он может успешно отражать тысячи самых разных атак и посягательств, выдерживать широкий диапазон температур, потреблять самую разную пищу. Он умеет перераспределять кровоток, заживлять порезы и царапины, ускорять или замедлять обмен веществ, в определенных пределах компенсировать повреждения частей тела и даже их потерю. Добавьте к этому самоорганизующуюся способность к пониманию, интеллект, позволяющий человеку учиться, быть частью общества, разрабатывать технологии и даже пересаживать органы... В результате вы получите необычайно устойчивую систему, хотя, конечно, ее способность переносить внешние воздействия не безгранична. Ибо никакой человеческий организм (в сочетании с любым, даже самым продвинутым интеллектом) не сможет избежать умирания. Рано или поздно смерть настигает любое живое существо.

У (лшеобнисти иии■ кглы к иамовоиитанивиепши к устойчивости всегда есть пределы.

 

Экосистемы тоже обладают впечатляющей устойчивостью и упругостью. Множество разных видов организмов контролируют друг друга, перемещаются в пространстве, увеличивают или уменьшают численность в зависимости от доступности питательных веществ, от погодных условий, в ответ на антропогенное воздействие. Популяции и экосистемы тоже имеют способность «учиться» и развиваться за счет своего невероятно богатого генетического разнообразия. Если дать им достаточно времени, они могут порождать совершенно новые системы, используя в изменчивых условиях любые возможности для поддержания жизни.

Устойчивость вовсе не синоним неподвижности или постоянства. Устойчивые системы могут быть очень динамич ными. Для них могут быть характерны кратковременные колебания, периодические выходы за пределы, постепенная смена сообществ (сукцессия), достижение климаксно-го сообщества, стабильные стадии, даже упадок — все это может быть нормальными проявлениями системы, если она обладает упругостью, способностью восстанавливаться.

Неизменные, постоянные во времени системы, напротив, могут быть очень хрупкими. Различие между неподвижной стабильностью и динамической устойчивостью очень важно. Статичную стабильность можно увидеть. Ее параметры можно измерить в любой момент времени — сейчас, черег неделю, через год. Упругость и способность переносить внешние воздействия разглядеть необычайно трудно, если только вы не превысите пределы устойчивости, не повредите балансирующие циклы и не разрушите всю структуру системы. Из-за того, что устойчивость неочевидна (если только вы не используете системный подход), люди часто пренебрегают ею и стремятся достичь видимой стабильности, производительности или других легко узнаваемых характеристик и качеств системы.

* Если вводить коровам генетически модифицированный коровий гормон роста, можно поднять надой молока, не увеличивая при этом количество фуража. Гормон позволяет перенаправить часть энергии обмена веществ с других функций организма на выработку молока. (Скотоводы многие века стремились к той же цели и во многом преуспели, но только не в такой степени.) За возросшие надои приходится расплачиваться уменьшением устойчивости. Коровы становятся больше подверженными заболеваниям, более зависимыми от действий человека, средняя продолжительность их жизни уменьшается.

■ Поставка продукции в магазины или комплектующих на сборочные заводы по принципу «точно в срок» позволяет самым разным отраслям уменьшить проблемы со складским хранением и сэкономить большие средства. Но одновременно с этим метод «точно в срок» делает систему более уязвимой, чувствительной к перебоям в поставках, зависимой от транспортных потоков и пробок, компьютерных сбоев, доступности рабочей силы и других факторов.

■ Интенсивное сведение лесов в Европе в течение сотен лет постепенно привело к тому, что исходные экосистемы уступили место плантациям монокультур, посадкам одновозрастных, часто чужеродных деревьев. Такие леса при любых условиях должны давать древесину и целлюлозу. Но из-за того, что в них нет множества разных видов, взаимодействующих между собой, извлекающих из почвы и возвращающих в нее различные питательные вещества, такие леса утратили устойчивость. Они совершенно беззащитны перед новой формой воздействия: промышленным загрязнением воздуха.

Многие хронические заболевания, включая порок сердца и рак, возникают из-за сбоев в механизмах, обеспечивающих устойчивость: восстанавливающих структуру ДНК, поддерживающих гибкость кровеносных сосудов, управляющих делением клеток и т. д. Многие экологические катастрофы происходили из-за утраты устойчивости, что было следствием исчезновения видов, нарушения химических и биологических процессов в почве, загрязнения токсичными веществами. Большие организации любого типа, от корпораций до правительств, утрачивают устойчивость просто потому, что механизмы обратных связей, благодаря которым они получают информацию и реагируют на окружающие условия, должны преодолеть слишком много последовательных запаздываний и искажений. (Еще чуть позже мы перейдем и к образованию иерархии.)

Можно рассматривать устойчивость как надежное основание, на которое система может опираться, чтобы вести свою обычную деятельность в относительной безопасности. У устойчивых систем основание больше, они располагают большим пространством для маневра, причем границы этого пространства мягкие, эластичные: если система подходит к опасному краю, они бережно отталкивают ее обратно. Когда система утрачивает упругость и устойчивость, размеры надежного основания сжимаются, защитные границы становятся ниже и тверже, система начинает балансировать на грани, и еще неизвестно, в какую сторону ей придется падать. Утрата устойчивости может оказаться неожиданной, поскольку сама система обычно уделяет все внимание своим действиям, а не причинам, кото-

 

Системами нужно управлять, уделяя внимание не только производительности или стабильности. Необходимо поддерживать их устойчивость и упругость — способность выдерживать внешние воздействия и успешно восстанавливаться после них.

рые лежат в их основе. В один прекрасный день система выполнит обычные действия, которые раньше проделывали многократно, но на сей раз они приведут к ее разрушению. Представление об устойчивости позволяет нам сохранять и даже развивать в системах их собственные восстановительные возможности, причем для этого есть масса способов. Именно такие знания лежат в основе органического земледелия, набирающего популярность в сельском хозяйстве: для сдерживания численности сельскохозяйственных вредителей используются их природные враги, естественные хищники. Представление о здоровье как едином целом позволяет врачам не просто лечить болезни, но и восстанавливать естественные защитные функции организма, внутреннюю сопротивляемость пациента заболеваниям! Понимание системных механизмов позволяет организовывать программы помощи не просто как раздачу продуктов питания и денежных средств, а как ряд мер, позволяющих восстановить способность людей самостоятельно добывать пропитание и зарабатывать деньги.

 

Самоорганизация

 

Эволюция — это не просто ряд случайностей, происходящих из-за перемен в окружающей среде по геологической истории и из-за борьбы за существование, она управляется определенными законами... Открыть и сформулировать эти законы одна из самых важных задач будущего

Людвиг фон Берталанфи*, биолог

Некоторые сложные системы демонстрируют удивительнейшую способность: они могут обучаться, изменяться.

Ludwig von Bertalanffy. Problems of Life: An Evaluation of Modern Biological Thought. New York: John Wiley & Sons Inc., 1952. lOo.

усложняться, эволюционировать. Это способность одной иилидитьоренной икринки развиться в лягушку, яйца — в курицу, яйцеклетки — в человека — то есть в чрезвычайно сложные организмы. Это способность природы породить миллионы отдельных видов, неповторимых, не похожих друг на друга, а ведь начиналось все с примитивного «бульона» из аминокислот. Это способность человеческого общества пользоваться огнем, сжигать каменный уголь, использовать пар, качать воду, применять разделение труда, организовывать конвейер и цеха по сборке автомобилей на его основе, строить небоскребы и опутывать весь мир сетью коммуникаций.

Способность систем усложнять свою собственную структуру называется самоорганизацией. Проявление самоорганизации в самой простой, механистической форме — обычные снежинки; морозные узоры на оконных стеклах с плохо пригнанными рамами; кристаллы причудливой формы, осаждаемые из пересыщенных растворов... Более сложное проявление самоорганизации можно наблюдать, когда семена дают ростки, когда ребенок учится говорить, когда соседи собираются вместе, чтобы препятствовать строительству хранилища химических отходов...

Самоорганизация встречается очень часто, особеннс ] в живых системах, поэтому мы воспринимаем ее как данность, иначе разнообразие самоорганизующихся систем в мире просто ослепило бы нас. Но из-за этого восприятия мы часто разрушаем механизмы самоорганизации, вместе того, чтобы максимально поддерживать их — а ведь мы сами представляем собой части самоорганизующихся систем.

Способностью к самоорганизации часто жертвуют в пользу краткосрочного увеличения производительности и стабильности, точно так же, как это происходит с устойчивостью. Производительность и стабильность — самыр частые аргументы для того, чтобы превратить людей, существ изначально талантливых и творческих, в прими-1 тивные механические придатки к производственным про- ■ цессам. Этим же оправдывают уменьшение генетического

разнообразия сельскохозяйственных растений. Эти же мотивы лежат в основе бюрократических систем и теорий управления, оперирующих людьми, словно бездушными единицами.

Способность к самоорганизации порождает разнородность и непредсказуемость. Она может вырастить новые структуры, создать новые способы существования и виды деятельности. Для самоорганизации необходимы свобода, возможность экспериментировать и некоторый (творческий) беспорядок. Условия, способствующие самоорганизп ции, могут показаться кому-то ужасными, а власти часто воспринимают их как угрозу своему существованию. Из-за этого, например, образовательные системы могут ограничивать творческие способности детей, вместо того чтобы всеми силами развивать их. А экономические меры могут быть направлены на поддержку давно существующих крупных корпораций, в ущерб новым, недавно созданным компаниям. Многие правительства очень не хотят, чтобы население их стран самоорганизовывалось.

К счастью, самоорганизация — это настолько присущее живым системам свойство, что даже самые деспотичные властные структуры не в состоянии полностью искоренить его. Но все же иногда самоорганизацию пытаются запретить, прикрываясь именем закона и порядка, и тогда наступают долгие периоды застоя и серости, безжалостные к любому творческому начинанию.

Специалисты по теории систем раньше полагали, что самоорганизация — настолько сложное свойство систем, оно непознаваемо в принципе. Компьютеры использовались для моделирования только механистических, детерминистских систем, не способных к эволюции, — тогда считалось, что эволюционирующие системы понять и смоделировать вообще невозможно.

Но прошло время, и новые открытия показали, что скольких несложных принципов организации вполне достаточно для того, чтобы получить широчайшее разнообразие самоорганизующихся структур. Представьте себе про-

 

 

 

Рис. 46. Даже очень сложные и замысловатые формы — такие, как показанные здесь кривые Коха — могут возникать из набора простых правил или принципов построения

 

 
Рис. 46. Даже очень сложные и замысловатые формы — такие, как показанные здесь кривые Коха — могут возникать из набора простых правил или принципов построения

стой равносторонний треугольник. Теперь к каждой стороне в середине пристройте по еще одному равностороннему треугольнику, с длиной стороны в три раза меньше. К каждому образовавшемуся треугольнику пристройте новые треугольники, еще в три раза меньше, и т. д. То, что получится, называется «кривой Коха», или «снежинкой Коха» — этапы ее построения показаны на рис. 46. Протяженность ее сторон можно увеличивать до бесконечности, но при этом «снежинка» ограничивает конечную площадь. Эта фигура — один из простейших примеров фракталов, самоподобных объектов. Изучающая их фрактальная геометрия находится на стыке искусства и математики. Фракталы строятся по относительно простым правилам, но при этом образуют очень сложные и красивые формы.

На основе всего нескольких элементарных правил построения фракталов компьютер может построить необычайно красивую, сложную, изящную картинку с растительным узором, очень похожим на настоящие листья папоротника. Вероятно, по таким же простым наборам геометрических правил из одной-единственной клетки развивается сложный человеческий организм. Базовые правила просты, но на их основе создаются объекты поразительной сложности и совершенства. Фрактальная геометрия, кстати говоря, показала, что суммарная поверхность легких среднестатистического человека по площади не уступает теннисному корту.

Вот еще несколько примеров простых правил организации, по которым строятся самоорганизующиеся системы большой сложности:

■ Все живые объекты, от вирусов до огромных деревьев, от амеб до слонов, основаны на одном и том же наборе правил организации, зашифрованных в молекулах ДНК, РНК и белков.

* Сельскохозяйственная революция (и все, что за ней последовало) началась с открытия: оказывается, люди могут вести оседлый образ жизни, владеть землей, выводить и выращивать зерновые культуры.

в «И создал Господь Вселенную, и поместил Землю в центре ее. И создал Господь сушу, и поместил замок в центре ее. И создал Господь человечество, и Церковь в центре его», — таким был основополагающий принцип создания социальных и физических структур в средневековой Европе.

■ «Бог и мораль давно вышли из моды; человеку следует придерживаться объективной и научной точки зрения, он должен владеть средствами производства и приумножать их, а других людей и природу рассматривать как средства производства», — таков основополагающий принцип промышленной революции.

Из простых принципов самоорганизации могут проистекать колоссальные технологические достижения, физические структуры, компании и корпорации, культуры и цивилизации.

 

Системы часто обладают свойством самоорганизации — способностью выстраивать собственную структуру, создавать новые структуры, учиться, видоизменяться, усложняться. На основе относительно простых правил могут возникнуть чрезвычайно сложные формы самоорганизации. А могут и не возникнуть.

Науке известны примеры того, как сложные самоорганизующиеся системы возникают из элементарных правил. Сама наука — это тоже самоорганизующаяся система, которой очень нравится мысль о том, что вся сложность вселенной проистекает из простых исходных правил. Действительно ли это так, науке пока достоверно установить не удалось.

 

Иерархическое строение

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-08-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: