· Создание иглы, заострённой действительно до атомных размеров.
· Обеспечение механической (в том числе тепловой и вибрационной) стабильности на уровне лучше 0,1 ангстрема.
· Создание детектора, способного надёжно фиксировать столь малые перемещения.
· Создание системы развёртки с шагом в доли ангстрема.
· Обеспечение плавного сближения иглы с поверхностью.
В сравнении с растровым электронным микроскопом атомно-силовой микроскоп обладает рядом преимуществ. Атомно-силовая микроскопия позволяет получить истинно трёхмерный рельеф поверхности. Кроме того, изучаемая поверхность не требует нанесения проводящего металлического покрытия, которое часто приводит к заметной деформации поверхности. Для нормальной работы растрового электронного микроскопа требуется вакуум, в то время как большинство режимов атомно-силовой микроскопии могут быть реализованы на воздухе или даже в жидкости. Данное обстоятельство открывает возможность изучения биомакромолекул и живых клеток.
К недостаткам атомно-силовой микроскопии следует отнести небольшой размер поля сканирования. Максимальный перепад высот составляет несколько микрон, а максимальное поле сканирования в лучшем случае составляет порядка 150×150 микрон. Другая проблема заключается в том, что при высоком разрешении качество изображения определяется радиусом кривизны кончика зонда, что при неправильном выборе зонда приводит к появлению артефактов на получаемом изображении. Обычный атомно-силовой микроскоп не в состоянии сканировать поверхность также быстро, как это делает растровый электронный микроскоп. Для получения изображения, требуется от нескольких минут до нескольких часов, в то время как растровый электронный микроскоп после откачки способен работать практически в реальном масштабе времени, хотя и с относительно невысоким качеством. Из-за низкой скорости развёртки атомно-силового микроскопа получаемые изображения оказываются искажёнными тепловым дрейфом, что уменьшает точность измерения элементов сканируемого рельефа. Кроме термодрейфа получаемые изображения могут также быть искажены из-за таких свойств пьезокерамики, как нелинейность, крип и гистерезис и перекрёстными паразитными связями, действующими между X, Y, Z-элементами сканера. Для исправления искажений в реальном масштабе времени современные атомно-силовые микроскопы используют программное обеспечение (например, особенность-ориентированное сканирование) либо сканеры, снабжённые замкнутыми следящими системами, в состав которых входят линейные датчики положения. Некоторые микроскопы вместо сканера в виде пьезотрубки используют XY и Z-элементы, механически несвязанные друг с другом, что позволяет исключить часть паразитных связей.
|
Экспериментальная часть
В работе проведено исследование фрагмента вала. На рис. Представлен скан вала. Размер скана 217.2 на 217.2нм
Заключение.
Таким образом, в работе показана возможность применения атомно-силовой микроскопии в исследовании поверхности. Тем не менее, для получения достоверных данных необходимо учитывать ряд фактов, влияющих на определение размера и формы поверхности. К таким фактам относится возможность взаимодействия кантилевера с исследуемой поверхностью, в результате которого, незакрепленные на подложке частицы поверхности смешаются, что приводит к искажению получаемого изображения.