Законы земледелия (законы урожая) как базовые законы агрономии.
Закон равнозначимости и незаменимости факторов жизни растений.
Согласно этому закону для роста и развития растений должен быть обеспечен приток всех факторов жизни растений - космических и земных. Растение может нуждаться как в больших, так и в ничтожно малых количествах факторов, однако отсутствие любого из них ведет к резкому снижению урожая и даже гибели растений. В этом проявляется абсолютный характер закона. Ни один фактор нельзя заменить другим. Например, недостаток фосфора нельзя заменить избытком азота, а ограниченное поступление света восполнить лучшим обеспечением растений водой и т.д. На практике получить максимально высокий урожай можно только при бесперебойном снабжении растений всеми факторами в оптимальном количестве.
Закон минимума.
Данный закон утверждает, что величина урожая определяется фактором, находящимся в минимуме. Впервые этот закон сформулировал Ю. Либих. Он считал, что рост урожая прямо пропорционален увеличению количества фактора, находящегося в минимуме, то есть для наглядной демонстрации закона минимума использовали так называемую «бочку Добенека», клетки которой условно обозначают отдельные факторы жизни растений. Они неодинаковы по высоте, каждая соответствует наличию определенного фактора. Пунктиром показан максимально возможный урожай растений при оптимальном наличии всех факторов (бочка заполнена доверху).
Закон минимума, оптимума, максимума.
Для демонстрации закона используют данные опыта, проведенного Гельригелем и неоднократно подтвержденного другими исследователями. В этом опыте растения ячменя выращивали в стеклянных сосудах, заполненных одной и той же плодородной почвой. Все условия выращивания растений, кроме влажности почвы в сосудах, были одинаковыми. Влажность почвы определяли по полной влагоемкости, которая соответствовала уровню влажности 100 %. В каждом из 8 сосудов влажность была различной и составляла 5, 10,20, 30, 40, 60, 80 и 100 %. После окончания опыта урожайность в зависимости от влажности возрастает или уменьшается. Как следует из данных, полученных в опыте Гельригеля, максимальный урожай ячменя соответствует оптимальной влажности почвы в сосуде (60 % ПВ). Минимум и максимум фактора (количества влаги) не обеспечили получение урожая.
Закон действия факторов жизни растений, по Э. Митчерлиху, гласит, что прибавка урожая зависит от каждого фактора роста и его интенсивности, она пропорциональна разнице между возможным максимальным и действительно полученным урожаем.
Закон возврата.
Вещество и энергия, отчужденные из почвы с урожаем, должны быть компенсированы (возвращены в почву) с определенной степенью превышения. Этот закон был открыт Ю.Либихом. К А. Тимирязев и Д. Н. Прянишников
Закон возврата. Вещество и энергия, отчужденные из почвы с урожаем, должны быть компенсированы (возвращены в почву) с определенной степенью превышения. Этот закон был открыт Ю. Либихом. Закон возврата — научная основа воспроизводства почвенного плодородия, частный случай проявления всеобщего закона сохранения веществ и энергии.
Закон возврата в почву питательных веществ. Для предотвращения снижения почвенного плодородия необходимо возвращать в почву питательные вещества с помощью внесения удобрений.
Закон соблюдения правильного чередования сельскохозяйственных культур в полях севооборота. Культурные растения потребляют различное количество питательных веществ при создании урожая.
Агрономические исследования в статике: по одному, множеству признаков. Исследования в разных (одномерное и двумерное) масштабных пространственных уровнях.
Статика рассматривает частный случай механического движения, когда оно не зависит от времени – речь идет о рассмотрении равновесия твердого тела, загруженного системой сил и находящегося в состоянии покоя.
В современных исследованиях очень широко используются методы моделирования. Суть их заключается в том, что реальные объекты исследования, особенно если они недоступны или если нельзя вмешиваться в их функционирование, заменяются соответствующими моделями, пользуясь которыми можно провести эксперимент, изучать их поведение при изменениях параметров внешней и внутренней среды.
Модель — это копия реального объекта, обладающая его основными характеристиками и способная имитировать его поведение.
Особенностью модели является то, что она находится всегда в определенном отношении с реальным объектом. Это значит, что она до определенных пределов может замещать изучаемый объект. И пределы эти должны быть известны и учитываться в оперировании моделями. Модель — это всегда упрощенное отражение объекта. Очень часто необходимо намеренно упрощение действительности модели, чтобы выделить главное, "отсечь" его от второстепенного, случайного, преходящего. Можно использовать целую совокупность моделей одного и того же объекта, каждая из которых отличается степенью сложности и составом учитываемых характеристик.
Модель должна соответствовать некоторым требованиям:
1. Достаточно полно отражать особенности и сущность исследуемого объекта, чтобы можно было замещать его при исследовании.
2. Представлять объект в упрощенном виде, но с допустимой степенью простоты для данного вида и цели исследования.
3. Давать возможность перехода от модельной информации к реальной. Это должно быть учтено в правилах построения модели.
В исследовании управления часто используются компьютерные модели. Они могут быть представлены в виде структуры системы управления, технологической схемы процесса управления, комплекса характеристик управления, факторов, влияющих на эффективность управления, структуры информации, взаимодействия функций управления и пр.
Использование подобных моделей может быть весьма эффективным в проведении исследования систем управления, однако следует иметь в виду, что методы исследования только в совокупности и комплексе дают ощутимый эффект и действительный результат. Моделирование наиболее эффективно тогда, когда исследователь имеет дело с хорошо структурированными проблемами, когда достаточно информации для оценки ситуаций и проблем, когда отработана методология работы с моделями.
Наиболее известными трудностями использования моделей в исследовании систем управления являются следующие: очень высокая стоимость, недостоверная исходная информация об объекте, чрезмерное упрощение характеристик, ошибки в методологии моделирования
компьютерное экспериментирование использует практически весь аппарат современной математики, предполагается знание основных математических дисциплин - алгебры, матанализа, теории дифференциальных уравнений, матстатистики, теории вероятности. Для решения математических задач накомпьютере необходимо владеть в полном объеме численными методами решения нелинейных уравнений, систем линейных уравнений, дифференциальных уравнений, уметь аппроксимировать и интерполировать функции. И, конечно же, предполагается свободное владение современными информационными технологиями, знание языков программирования и владение навыками разработки прикладных программ.
Без компьютерного моделирования сейчас невозможно решение крупных научных и экономических задач. Выработана технология исследования сложных проблем, основанная на построении и анализе с помощью вычислительной техники математической модели изучаемого объекта. Такой метод исследования называется вычислительным экспериментом.