Вычислительный эксперимент




Вычислительным экспериментом называется методология и технология исследований, основанные на применении прикладной математики и компьютера как технической базы при использовании математических моделей.

Вычислительный эксперимент основывается на создании математических моделей изучаемых объектов, которые формируются с помощью некоторой особой математической структуры, способной отражать свойства объекта, проявляемые им на различных экспериментальных условиях.

Математические структуры превращаются в модели в случае, когда элементам структуры дается физическая интерпретация, устанавливается соотношение между параметрами математической структуры и экспериментально определенными свойствами объекта, характеристики элементов модели и самой модели соответствуют свойствам объекта.

Таким образом, математические структуры вместе с описанием соответствия экспериментально обнаруженным свойствам объекта и являются моделью изучаемого объекта, отражая в математической, символической форме существующие в природе зависимости, связи и законы.

Каждый вычислительный эксперимент основывается как на математической модели, так и на приемах вычислительной математики. На основе математического моделирования и методов вычислительной математики создавались теория и практика вычислительного эксперимента, технологический цикл которого разделяется на следующие этапы.

1-й этап. Для исследуемого объекта строится модель, обычно физическая, фиксирующая разделение всех факторов на основные и второстепенные. Одновременно формулируются допущения и условия применимости модели, границы, в которых будут справедливы полученные результаты. Модель записывается в математических терминах.

2-й этап. Разрабатывается метод расчета сформулированной математической задачи. Эта задача представляется в виде вычислительного алгоритма. Вычислительный эксперимент имеет многовариантный характер, так как решения поставленных задач зависят от многочисленных входных параметров. Создаются однотипные варианты задачи, отличающиеся значением некоторых параметров. Поэтому при организации вычислительного эксперимента используют численные методы.

3-й этап. Разрабатывается алгоритм и программа решения задачи на компьютере.

4-й этап. Проведение расчетов на компьютере. Результатом вычислений является цифровой материал, который необходимо проанализировать. Точность информации определяется достоверностью модели, положенной в основу модели.

5-й этап. Обработка результатов расчета, их анализ и выводы.

Вычислительный эксперимент имеет исключительное значение в тех случаях, когда натурные эксперименты и построение физической модели оказываются невозможными. В настоящее время создано большое количество программных продуктов, реализующих вычислительный эксперимент, таких как ANSYS, ADAMS, NASTRAN, MARC и др.

Основы метода сеток

Решение краевых задач в каждом конкретном случае является достаточно сложным процессом. Аналитическое решение даже одномерного уравнения теплопроводности, являющегося дифференциальным уравнением в частных производных параболического типа, трудноосуществимо, если иметь в виду зависимость теплофизических свойств от температуры, нелинейность граничных условий, т.е. зависимость их от температурного поля. Можно сказать, что аналитические методы оказываются практически непригодными для нахождения двух- и трехмерных температурных полей в областях сложной конфигурации. От этих недостатков свободны численные методы, в которых дифференциальные операторы заменяются алгебраическими, получающиеся матричные уравнения решаются на компьютерах с нахождением температурного поля в узловых точках конечно-разностной сетки.

Основная идея численных методов состоит в замене непрерывных производных по времени и координатам, входящих в дифференциальные уравнения, описывающие неравновесные процессы переноса, а также в краевые условия, их приближенными значениями в отдельных точках (узлах) конечно-разностной сетки. В результате такой замены дифференциальная краевая задача сводится к системе алгебраических (матричных) уравнений относительно искомых параметров в узлах и ячейках сетки.

В общем случае расположение узлов сетки в исследуемой области может быть произвольным. Оно определяется особенностями решаемой задачи. На практике часто применяют сетку, равномерно покрывающую расчетную область. Такая сетка с постоянными расстояниями между ближайшими узлами (шагами сетки) называется регулярной. Фрагмент такой сетки применительно к одномерной нестационарной задаче показан на рис. 4.2. Узлы этой сетки определяются координатами

где N – число разбиений по толщине слоя Hx; hx, ht – соответственно шаги пространственной (по x) и временной (по t) сеток; i, k – номера узловых точек в направлении координат x, t.

 

 
 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-02-11 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: