Описательное моделирование




Исследование операций

Внаше время наука уде­ляет все большее внимание вопросам организации и управления. Быстрое развитие и усложнение техники, расширение масш­табов проводимых мероприятий и спектра их возмож­ных последствий, внедрение автоматизированных си­стем управления во все области практики — все это приводит к необходимости анализа и организации сложных процессов. От науки требуются рекоменда­ции по оптимальному (наилучшему) управлению таки­ми процессами. Прошли времена, когда правильное, эффективное управление находилось организаторами «на ощупь», методом «проб и ошибок». Сегодня для выработки такого управления требуется научный под­ход — слишком велики потери, связанные с ошибками.

Потребности практики вызвали к жизни специаль­ные научные методы, которые удобно объединять под названием «исследование операций ». Под этим терми­ном мы будем понимать применение математических, количественных методов для обоснования решений целенаправленной человеческой дея­тельности.

Исследование операций (ИО) (англ. Operations Research (OR)) — дисциплина, занимающаяся разработкой и применением методов нахождения оптимальных решений на основе математического моделирования, статистического моделирования и различных эвристических подходов в различных областях человеческой деятельности. Иногда используется название математические методы исследования операций.

Поясним, что понимается под «решением». Пусть предпринимается какое-то мероприятие, направленное к достижению определенной цели. У лица (или груп­пы лиц), организующего мероприятие, всегда имеется какая-то свобода выбора: оно может организовать его тем или другим способом, например, выбрать образцы техники, которые будут применены, так или иначе распределить имеющиеся средства и т. д.

«Решение » это есть какой-то выбор из ряда возможностей, имеющихся у организатора. Решения бывают плохими и хорошими, продуманными и скороспелыми, обосно­ванными и произвольными.

Принимая какие-либо решения, мы не занимаемся «исследованием операций». Исследование операций начинается тогда, ког­да для обоснования решений применяется математический аппарат.

Например, организуется работа общественного транспорта в новом городе с сетью предприятий, жи­лыми массивами и т. д. Необходимо принять ряд решений: по каким маршрутам и какие транспортные средства направить. В каких пунктах сделать останов­ки? Как изменять частоту следования машин в зави­симости от времени суток? и т. д. Эти решения — сложные, а главное, от них очень многое зависит. Неправильный выбор решений может отразиться на деловой жизни целого города.

Конечно, и в этом случае при выборе решения можно действовать интуитивно, опираясь на опыт и здравый смысл (так оно нередко и делается). Но гораздо разумнее будут решения, если они подкреплены математически­ми расчетами. Эти предварительные расчеты помогут избежать длительного и дорогостоящего поиска нуж­ного решения «на ощупь».

Чем сложнее, планируемое мероприятие, тем важнее становятся научные методы, позволяющие заранее оценить последствия каждого решения. Расчетами, облегчаю­щими людям принятие решений, и занимается иссле­дование операций.

Впервые название «исследование операций» появилось в годы второй мировой войны, когда в вооруженных силах США были сформированы специальные группы научных работников (физиков, математиков, инженеров), в задачу которых входила подготовка проектов решений для командующих бое­выми действиями. Эти решения касались главным об­разом боевого применения оружия и распределения сил и средств по различным объектам. Подобного рода задачами (правда, под иными названиями) занимались и ранее, в частности, в СССР. В дальнейшем исследование операций расширило область своих при­менений на самые разные области практики: промыш­ленность, сельское хозяйство, строительство, торговля, бытовое обслуживание, транспорт, связь, здравоохра­нение, охрана природы и т. д. Сегодня трудно назвать такую область практики, где бы ни применялись, в том или другом виде, математические модели и ме­тоды исследования операций.

Чтобы познакомиться со спецификой этой науки, рассмотрим ряд типичных для нее задач. Эти задачи, намеренно взятые из самых разных областей практи­ки, несмотря на некоторую упрощенность постановки, дают все же понятие о том, каков предмет и каковы цели исследования операций.

1. План снабжения предприятий. Имеется ряд предприятий, потребляющих известные виды сырья, и есть ряд сырьевых баз, которые могут поставлять это сырье предприятиям. Базы связаны с предприяти­ями какими-то путями сообщения (железнодорожными, водными, автомобильными, воздушными) со свои­ми тарифами. Требуется разработать такой план снаб­жения предприятий сырьем, чтобы по­требности в сырье были обеспечены при минимальных расходах на перевозки.

2. Постройка магистрали. Сооружается участок железнодорожной магистрали. В нашем распо­ряжении — определенное количество средств: людей строительных машин, ремонтных мастерских, грузовых автомобилей и т. д. Требуется назначить очередность работ, распределить машины и людей по участкам пути, обеспечить ремонтные работы так, чтобы оно было завершено в минимально возможный срок.

3. Продажа сезонных товаров. Для реализации оп­ределенной массы сезонных товаров создается сеть временных торговых точек. Требуется выбрать разум­ным образом: число точек, их размещение, товарные запасы и количество персонала па каждой из них так, чтобы обеспечить максимальную экономическую эф­фективность распродажи.

4. Противолодочный рейд. Известно, что в некото­ром районе морского театра военных действий нахо­дится подводная лодка противника. Группа самолетов противолодочной обороны получила задание: разы­скать, обнаружить и уничтожить лодку. Требуется ра­ционально организовать операцию (рейд): выбрать мар­шруты самолетов, высоту полета, способ атаки так, чтобы с максимальной уверенностью обеспечить вы­полнение боевого задания.

5. Медицинское обследование. Известно, что в ка­ком-то районе обнаружены случаи опасного заболева­ния. С целью выявления заболевших (или носителей инфекции) организуется медицинское обследование жителей района. На это выделены материальные средства, оборудование, медицинский персонал. Тре­буется разработать такой план обследования (число медпунктов, их размещение, последовательность ос­мотров специалистами, виды анализов и т. д.), кото­рый позволит выявить, по возможности, максималь­ный процент заболевших и носителей инфекции.

Число примеров легко было бы умножить, но и приведенных достаточно, чтобы представить себе ха­рактерные особенности задач исследования операций. Хотя примеры относятся к самым различным обла­стям, в них легко просматриваются общие черты. В каждом из них речь идет о каком-то мероприя­тии, преследующем определенную цель. Заданы не­которые условия, характеризующие обстановку (в ча­стности, средства, которыми мы можем распоряжать­ся). В рамках этих условий требуется принять такое решение, чтобы задуманное мероприятие было в ка­ком-то смысле наиболее выгодным.

В соответствии с этими общими чертами выраба­тываются и общие приемы решения подобных задач, составляющие методологическую схе­му и аппарат исследования операций.

 

2. Основные понятия и принципы исследования операций

Операцией называется всякое мероприятие (си­стема действий), объединенное единым замыслом и направленное к достижению какой-то цели (все меро­приятия, рассмотренные в пунктах 1— 5, являются «операциями»).

Операция есть всегда управляемое мероприя­тие, т. е. от нас зависит, каким способом выбрать не­которые параметры, характеризующие ее организацию. «Организация» здесь понимается в широком смысле слова, включая набор технических средств, применяе­мых в операции.

Всякий определенный выбор зависящих от нас параметров называется решением или планом. Решения могут быть удачными и неудачными, разумными и неразум­ными. Оптимальными называются решения, по тем или другим признакам предпочтительные перед другими.

Цель исследования операций — предвари­тельное количественное обоснование оптимальных ре­шений.

Иногда (относительно редко) в результате исследо­вания удается указать одно-единственное строго опти­мальное решение, гораздо чаще — выделить область практически равноценных оптимальных (разумных) ре­шений, в пределах которой может быть сделан окон­чательный выбор.

Заметим, что само принятие решения выхо­дит за рамки исследования операций и относится к компетенции ответственного лица, чаще — группы лиц, которым предоставлено право окончательного выбора и на которых возложена ответственность за этот выбор. Делая выбор, они могут учитывать, наряду с рекомен­дациями, вытекающими из математического расчета, еще ряд соображений (количественного и качествен­ного характера), которые этим расчетом не были учтены.

Параметры, совокупность которых образует ре­шение, называются элементами решения. В качестве элементов решения могут фигурировать различные числа, векторы, функции, физические при­знаки и т. д.

Например, если составляется план пере­возок однородных грузов из пунктов отправления А 1, А 2,..., А m в пункты назначения В 1, В 2,..., В n, то эле­ментами решения будут числа xij, показывающие, ка­кое количество груза будет отправлено из пункта отправления i в пункт назначения j. Набор чисел xij об­разует решение.

Кроме элементов решения, которыми мы, в каких-то пределах, можем распоряжаться, в любой задаче исследования операций имеются еще и заданные условия, которые фиксированы с са­мого начала и нарушены быть не могут (например, грузоподъемность машины; размер планового задания; весовые характеристики оборудования и т. п.). В част­ности, к таким условиям относятся средства (мате­риальные, технические, людские), которыми мы вправе распоряжаться, и иные ограничения, налагаемые на решение. В своей совокупности они формируют так называемое «множество возможных решений».

Обозначим это множество одной буквой X. Речь идет о том, чтобы в множестве возможных решений X выделить те решения, которые с той или другой точки зрения эффективнее (удачнее, предпоч­тительнее) других.

Чтобы сравнивать между собой по эффективности разные решения, нужно иметь какой-то количественный критерий, так называемый пока­затель эффективности (его часто называют «це­левой функцией»). Этот показатель выбирается так, чтобы он отражал целевую направленность операции. «Лучшим» будет считаться то решение, которое в максимальной степени способствует достижению по­ставленной цели.

Чтобы выбрать показатель эффективности W, нужно спросить себя: чего мы хотим, к чему стремимся, предпринимая операцию? Выбирая решение, мы, есте­ственно, предпочтем такое, которое обращает показа­тель эффективности W в максимум (или же в мини­мум). Например, доход от операции хотелось бы обратить в максимум; если же показателем эффектив­ности являются затраты, их желательно обратить в минимум. Если показатель эффективности желательно максимизировать, мы это будем записывать в виде W ® max, а если минимизировать — W ® min.

Для иллюстрации принципов выбора показателя эффективности вернемся опять к примерам 1— 5, выберем для каждого из них естественный показатель эффективности и укажем, требуется его максимизиро­вать или минимизировать.

1. План снабжения предприятий. Задача опера­ции — обеспечить снабжение сырьем при минималь­ных расходах на перевозки. Показатель эффективности R — суммарные расходы на перевозки сырья за единицу времени, например, месяц (R ® min).

2. Постройка магистрали. Требуется так спланировать строительство, чтобы закончить его как можно скорее. Естественным показателем эффектив­ности было бы время завершения стройки, если бы оно не было связано со случайными факторами (отказы техники, задержки в выполнении отдельных работ). Поэтому в качестве показателя эффективности можно выбрать среднее ожидаемое время Т окончания строй­ки.

3. Продажа сезонных товаров. В качестве показа­теля эффективности можно взять среднюю ожидаемую прибыль от реализации товаров за сезон.

4. Противолодочный рейд. Так как рейд имеет вполне определенную цель — уничтожение лодки, то в качестве показателя эффективности следует выб­рать вероятность того, что лодка будет унич­тожена.

5. Медицинское обследование. В качестве показа­теля эффективности можно выбрать средний процент (долю) Q больных и носителей инфекции, которых удалось выявить.

3. Понятие модели и моделирования

Исследуя объекты окружающего мира, мы вынуждены как-то отображать результаты исследования для того, чтобы, с одной стороны, представить их в виде, удобном для анализа, а с другой для их хранения и передачи в пространстве или времени. Проектируя, создавая что-то новое, мы первоначально формируем некоторый образ этого нового. Управляя чем-либо, мы, как правило, пытаемся анализировать, к каким последствиям приведет управление. Перечисленные задачи требуют фиксации (представления) информации об объекте в виде некоторого образа (словесного, графического и т. п.).

В связи с этим в познавательной и практической деятельности человека большую, если не ведущую, роль играют модели и моделирование. Особенно незаменимо моделирование при работе со сложными объектами (в частности, экономическими). Все это делает моделирование важнейшим инструментом системного анализа.

Модель в широком понимании — это образ (в том числе условный или мысленный) какого-либо объекта или системы объектов, используемый при определенных условиях в качестве их «заместителя» или «представителя». Другими словами, модель — это упрощенное подобие объекта, которое воспроизводит интересующие нас свойства и характеристики объекта-оригинала или объекта проектирования.

Примеры. Моделью Земли служит глобус, а звездного неба — экран планетария. Чучело животного есть его модель, а фотография на паспорте или любой перечень паспортных данных - модель владельца паспорта.

Моделирование связано с выяснением или воспроизведением свойств какого-либо реального или создаваемого объекта, процесса или явления с помощью другого объекта, процесса или явления. Моделирование — это построение, совершенствование, изучение и применение моделей реально существующих или проектируемых объектов (процессов и явлений).

Почему мы прибегаем к использованию моделей вместо попыток «прямого взаимодействия с реальным миром»? Можно назвать три основные причины.

Первая причина — сложность реальных объектов. Число факторов, которые относятся к решаемой проблеме, выходит за пределы человеческих возможностей. Поэтому одним из выходов (а часто единственным) в сложившейся ситуации является упрощение ситуации с помощью моделей, в результате чего уменьшается разнообразие этих факторов до уровня восприимчивости специалиста.

Вторая причина — необходимость проведения экспериментов. На практике встречается много ситуаций, когда экспериментальное исследование объектов ограничено высокой стоимостью или вовсе невозможно (опасно, вредно, ограниченность науки и техники на современном этапе).

Третья причина — необходимость прогнозирования. Важное достоинство моделей состоит в том, что они позволяют «заглянуть в будущее», дать прогноз развития ситуации и определить возможные последствия принимаемых решений.

Среди других причин можно назвать следующие:

• исследуемый объект либо очень велик (модель Солнечной системы), либо очень мал (модель атома);

• процесс протекает очень быстро (модель двигателя внутреннего сгорания) или очень медленно (геологические модели);

• исследование объекта может привести к его разрушению (модель самолета, автомобиля).

Цели моделирования

Человек в своей деятельности обычно вынужден решать две задачи — экспертную и конструктивную.

В экспертной задаче на основании имеющейся информации описывается прошлое, настоящее и предсказывается будущее. Суть конструктивной задачи заключается в том, чтобы создать нечто с заданными свойствами. Для решения экспертных задач применяют так называемые описательные модели, а для решения конструктивных — нормативные.

Описательное моделирование

Описательные модели (дескриптивные, познавательные) предназначены для описания свойств или поведения реальных (существующих) объектов. Они являются формой представления знаний о действительности.

Примеры. План города, отчет о деятельности фирмы, психологическая характеристика личности.

Можно назвать следующие цели описательного моделирования в зависимости от решаемых задач:

• изучение объекта (научные исследования) — наиболее полно и точно отразить свойства объекта;

• управление — наиболее точно отразить свойства объекта в рабочем диапазоне изменения его параметров;

• прогнозирование — построить модель, способную наиболее точно прогнозировать поведение объекта в будущем;

• обучение - отразить в модели изучаемые свойства объекта.

Построение описательной модели происходит по следующей схеме:

Рис. 1. Последовательность построения описательной модели

 

Модель объекта можно построить, только наблюдая за ним. То, что мы наблюдаем, необходимо закодировать либо с помощью слов, либо символов, в частности, математических, либо графических образов, либо в виде физических предметов, процессов или явлений. Наконец, закодированные результаты наблюдения надо зафиксировать в виде модели.

Отражение свойств объекта в модели не является полным в силу разных причин: особенностей восприятия, наличия и точности измерительных приборов, потребности и, наконец, психического состояния субъекта.

Если обозначить полную информацию об объекте через Io, а воспринимаемую информацию — , то отражение математически можно сформулировать следующим образом: где Io, или в линейном приближении (рис. 2):

 

Рис. 2. Фильтрация информации об объекте.

 

 

где kс – информационная проницаемость среды – свойство среды по передаче информации от объекта к субъекту (0 ≤ kс ≤ 1);

kи – коэффициент измерительной способности (вооруженности) субъекта – способность субъекта воспринимать (измерять) информацию (0 < kи < 1);

kц – целевая избирательность субъекта – связана с потребностью в конкретных свойствах объекта (0 < kц < 1);

kп – психологическая избирательность субъекта – связана с его психологическим состоянием (0 < kп ≤ 1).

Хотелось бы обратить внимание на субъективный характер моделей. Во все, что ни делает человек, в том числе и построение моделей, он вкладывает свою точку зрения. Это, в частности, может привести к тому, что мы принимаем свою точку зрения за единственную, а карту местности — за саму местность, которую она представляет. Существуют следующие субъективные факторы, влияющие на качество создаваемых моделей.

Избирательность. Модель строится на основании наблюдений за объектом, но человек замечает свойства объекта избирательно. На это влияют образование, мировоззрение, опыт, а также настроение, чувства, заботы и общее самочувствие. В результате формируется модель, не отвечающая целям моделирования.

Конструирование. Это обратный аналог избирательности: мы начинаем видеть то, чего нет. Мы заполняем пробелы в информации о мире, чтобы он приобрел некий смысл и предстал перед нами в том виде, каким, по нашему мнению, он должен быть. Длительная эволюция воспитала нас дополнять увиденные фрагменты до полного образа: если мы видим из-за дерева голову волка, то мысленно дорисовываем его туловище и хвост. Поэтому когда при исследовании объекта мы получаем неполную информацию о нем, то невольно заполняем информационные «пробелы», исходя из своего опыта. В результате можем получить модель, неадекватную объекту.

Искажение. Искажение проявляется в том, что мы строим модели окружающего мира, выделяя одни его составляющие за счет замалчивания других. В частности, искажение лежит в основе творческих способностей (поэта, художника, композитора) и некоторых болезней, например паранойи.

Обобщения. Пользуясь обобщением, мы создаем мысленные модели, взяв за основу один случай и обобщив его на все возможные случаи. Обобщение является основой статистических выводов, но при условии так называемой репрезентативной (представительной) выборки ситуаций. Опасность обобщения состоит в том, что, взяв какую-либо ситуацию, человек расценивает ее как типичную и распространяет извлеченные из нее выводы на все сходные, по его мнению, ситуации (что, в частности, и является основой суеверия).

Таким образом, не все свойства объекта нам доступны из-за свойств окружающей среды, а из доступных не все мы можем измерить или оценить. Из тех, что можем измерить, не все нам необходимы. Из необходимых свойств мы не все из них адекватно воспринимаем из-за психического состояния (невнимательности, субъективного предпочтения, страха и т. п.).

На основании воспринимаемой информации об объекте формируется его образ, называемый моделью.

Для моделирования свойственны некоторые парадоксы. Поскольку к моделированию мы прибегаем из-за сложности изучаемого объекта, то модель заведомо проще оригинала. Целевая избирательность отсекает несущественные, на наш взгляд, качества объекта. Однако в процессе исследования никогда нет 100%-ной уверенности в том, что несущественные качества действительно являются несущественными с точки зрения конкретной исследовательской задачи, поэтому есть угроза «с водой выплеснуть ребенка».

Другой парадокс, который можно назвать парадоксом «одноразовой посуды», связан с тем, что каждая модель создается под определенную исследовательскую задачу и не всегда применима к решению других, какой бы привлекательной модель ни была. Распространенный в науке перенос моделей с одной задачи на другую далеко не всегда оправдан и обоснован.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-12-29 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: