Особенности миграции воды




Движение воды в почве


Каждый из нас наблюдал, как вода впитывается в почву. Казалось бы, все просто: осадки выпадают на поверхность, и вода заполняет имеющиеся в почве пустоты. Но в верхнем слое почва способна удержать своими капиллярными силами лишь некоторую часть влаги. Это количество воды называют наименьшей влагоемкостью. Все, что свыше, под действием гравитационных сил стекает в нижележащий слой. Когда и он наполнится свыше влагоемкости, избыток воды перетечет в следующий слой. И так до тех пор, пока вода не впитается в достаточно сухой слой почвы, влажность которого окажется ниже его наименьшей влагоемкости, или избыток воды поступит в грунтовые воды, находящиеся в нижней части почвенного профиля. Получается, что каждый почвенный слой подобен некоторой емкости, которая заполняется водой, а количество влаги, превышающее эту емкость, перетекает в нижнюю. И так все ниже и ниже, почти как в Бахчисарайском фонтане.

На основании представления о последовательном насыщении слоев влагой сформировался так называемый балансовый метод расчета движения воды в почве. Однако расчеты, сделанные с его помощью, неизменно занижали глубину, на которую проникали вода и растворенные в ней вещества, по сравнению с тем, что наблюдалось в действительности [1, 2]. Так, распространенный в Европе пестицид атразин не должен был попадать даже в глубь корнеобитаемого слоя (20-25 см), а на самом деле в 1989 г. в Баварии 250 колодцев было загрязнено этим сильно токсичным веществом [3]. То же самое нередко происходило с нефтью и нефтепродуктами.

Поскольку практические запросы требовали точного знания движения воды в почве, необходимо было сформулировать физическую основу процесса, описать его математически и построить прогнозную модель, с помощью которой можно было бы проводить расчеты, необходимые для предотвращения природных ситуаций такого рода.

Особенности миграции воды

При описании процессов движения воды и растворенных веществ в почве обычно полагают, что почва - это капиллярно-пористое тело, подобное керамическому изделию. Вода в почве должна перемещаться равномерно и постепенно, т.е. при достижении насыщения будет двигаться от слоя к слою по всем капиллярам. Так ли это на самом деле?

Проделаем такой эксперимент. На поверхность предварительно насыщенной влагой почвы установим металлическую квадратную раму со стороной в 50 см, открытую сверху и снизу. Стенки квадрата будут предохранять вещество от растекания по поверхности почвы. Зальем в раму слабый раствор водорастворимого крахмала, который движется в почве так же, как и чистая вода. После того как раствор впитается, последовательно выкопаем горизонтальные почвенные срезы-“площадки” под рамой через каждые 5 см и будем обрызгивать эти площадки раствором йода. Там, где фильтровался крахмал, появится синее пятно, которое можно зарисовать или сфотографировать. Углубляясь таким образом, мы обнаружим основные пути фильтрации раствора в почве. Этот метод исследований был предложен в 1970-х годах известным почвоведом Е.А.Дмитриевым [3].

Пятна окрашивания по крахмальной метке на различных глубинах,
показывающие весьма неоднородное распределение влаги в объеме почвы.
Серая лесная почва Владимирского Ополья.

Результаты полевого эксперимента с лизиметрами. Столбики - объемы профильтровавшегося раствора (V, мл) и концентрации в нем ионов калия и хлора для глубин 30 и 60 см. Концентрация представлена в виде относительной величины - отношения содержания иона в поровом растворе (С) к его содержанию в исходном растворе (C0), подаваемом на поверхность.

С помощью такого эксперимента была получена картина миграции раствора крахмала в серой лесной почве во Владимирском Ополье, недалеко от г.Суздаля. В этой обычной пахотной почве нет ярко выраженных и различающихся по свойствам слоев (почвенно-генетических горизонтов), образовавшихся в процессе формирования, кроме собственно пахотного, глубиной до 25 см. Раствор заметно растекался за границы рамы уже на глубине 15 см, удаляясь на 50 см и более от ее границ на поверхности. Нередко уже на глубине 30 см все крахмальные пятна оказывались вне площади рамы.

Итак, результаты опытов показывают, что влага в почве, даже в процессе впитывания, движется весьма неравномерно. Почвенные поры оказываются далеко не простыми цилиндрическими капиллярами, а образованиями сложной формы. Через одни вода фильтруется быстро, в другие проникает постепенно, рассасываясь из крупных капилляров, а в некоторые, тупиковые, вообще не попадает. Значит, чтобы описать такую сложную миграцию влаги, необходимо ввести понятия о крупных макропорах и трещинах, по которым быстро и неравномерно движется влага и растворенные в ней вещества, и тонких порах, в которых вода движется медленно, долго сохраняясь.

Кроме того, необходимо понять, что же происходит при движении в почве растворенных веществ, которые могут сорбироваться или не сорбироваться ее твердой фазой? Достаточно ли адекватны наши традиционные представления о сорбции и десорбции ионов естественным процессам сохранения и передвижения растворенных веществ в почве?



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-08-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: