Ускорение разработки и производства аппаратуры, увеличение ее серийности, снижение стоимости можно достигнуть унификацией, нормализацией и стандартизацией основных параметров и типоразмеров печатных плат, блоков, приборных корпусов, стоек, широким применением модульного принципа конструирования.
В основе стандартизации модулей и их несущих конструкций лежат типовые функции, свойственные многим электронным системам. Для использования при проектировании модульного принципа конструирования разработаны ведомственные нормали и государственные стандарты, устанавливающие термины, определения, системы типовых конструкций модульных систем.
Конструкционная система должна представлять многоуровневое семейство модулей с оптимальным составом набора, обеспечивающим функциональную полноту при построении аппаратуры определенного назначения. Все модули системы должны быть совместимы между собой по конструктивным, электрическим и эксплуатационным параметрам.
Базовый принцип. Базовым называется принцип конструирования, при котором частные конструктивные решения реализуются на основе стандартных конструкций модулей или конструкционных систем модулей (базовых конструкций), разрешенных к применению в аппаратуре определенного класса, назначения и объектов установки.
При разработке базовых конструкций должны учитываться особенности современных и будущих разработок. При этом частные конструктивные решения обобщаются, а основные свойства и параметры закладываются в конструкции, которые стандартизуются, поставляются и рекомендуются для широкого применения.
Базовые конструкции не должны быть полностью конструктивно завершенными, необходимо предусматривать возможность их изменения для создания модификаций аппаратурных решений. Иерархическое построение базовых конструкций с гибкой структурой и числом уровней не более четырех является вполне достаточным для разработки РЭА любой сложности.
Каждый из элементов конструктивной иерархии характеризуется длиной L, высотой H и глубиной (шириной) B. В зависимости от назначения того или иного типа систем соотношение размеров определенных ее конструктивных частей может быть различным. Однако эти соотношения должны подчиняться определенным правилам и закономерностям, которые устанавливают соответствующие технические регламенты на определенный класс аппаратуры.
В конструкционных системах любого типа электронной аппаратуры основные размеры L, Н, В базовых конструкций устанавливаются соответствующими единому модулю. В каждом направлении развития размеров по координатам x(L), у(Н), z(B) указанный модуль равен 2,5 мм. Он устанавливается в соответствии с шагом координатной сетки печатных плат и выводов элементов на печатной плате и передней панели по x(L), шагом выводов элементов и соединителей на функциональной печатной плате и на кроссплате по у(Н) и z(B).
Единый размерный модуль обеспечивает компоновку различных изделий конструкционной системы как в пространстве, например в трех различных плоскостях комплектного корпуса или блока, так и на плоскости - на поверхности одноплатного изделия. Для каждого уровня базовых конструкций устанавливаются ряды размеров по L, Н, В, каждый из которых взаимосвязан с рядами размеров других уровней с целью обеспечения конструктивной совместимости. Каждый последующий член ряда образуется приращением к предыдущему принятого значения модуля.
Для конкретного проектирования базовых конструкций из отдельных членов рядов составляются оптимальные типоразмеры, среди которых выделяются предпочтительные. Главным исходным требованием при выборе типоразмера является плотность компоновки, определяемая отношением числа активных элементов и корпусов ИС к площади (объему) изделия. Типоразмеры являются рабочим средством достижения сквозной совместимости изделий системы. Например, типоразмеры плат образовываются с учетом стандартной установки их в соответствующий корпус, а типоразмеры корпусов, в свою очередь, устанавливаются с учетом осуществления взаимоприменений.
Модули нулевого уровня. На низшем нулевом уровне конструктивной иерархии РЭА находятся МС. По функциональному назначению МС делят на логические (цифровые), линейно-импульсные и линейные (аналоговые). Элементы электрической схемы полупроводниковых МС формируют в объеме или на поверхности полупроводникового материала (подложки). Формирование активных и пассивных элементов схемы производят введением концентраций примесей в различные части монокристаллической пластины. В зависимости от применяемых активных элементов полупроводниковые МС подразделяют на схемы с биполярными и униполярными структурами. В гибридных МС пассивную часть схемы выполняют в виде пленок, наносимых на поверхность диэлектрического материала (подложки), а активные элементы, имеющие самостоятельное конструктивное оформление, крепят к поверхности подложки.
Степень интеграции Ки микросхемы определяется числом N содержащихся в ней элементарных схем: Ки = [lgN] + 1, где [lgN - целая часть lgN. Микросхема, содержащая до 10 элементарных схем, имеет первую степень интеграции (малая МС), до 100 схем - вторую (средняя МС), до 1000 схем - третью (БИС), свыше 1000 схем - сверхбольшую МС (СБИС).
Ряд функциональных микросхем, объединенных по виду технологии изготовления, напряжениям источников питания, входным и выходным сопротивлениям, уровням сигналов, конструктивному оформлению и способам монтажа, образуют серию МС. Обычно в серию МС входит такой набор функциональных микросхем, из которых можно построить законченное устройство. Существуют также серии специальных микросхем, предназначенных для работы в специфических условиях, или специального назначения.
Корпуса микросхем. По конструктивному оформлению МС делят на корпусные с выводами, корпусные без выводов и бескорпусные. Корпуса МС служат для защиты помещенных в них полупроводниковых кристаллов, подложек и электрических соединений от внешних воздействий. Корпуса микросхем бывают металлостеклянными, металлокерамическими, металлопластмассовыми, стеклянными, керамическими и пластмассовыми.
В первых трех разновидностях корпусов крышка выполняется металлической, а основание - стеклянным, керамическим или пластмассовым. Металлическая крышка обеспечивает эффективную влагозащиту при хорошем отводе теплоты от кристалла, снижает уровень помех. В пластмассовых и керамических корпусах крышку и основание выполняют из однородного материала. На корпус МС наносится маркировка в соответствии с ее условным обозначением и выполняется нумерация выводов относительно ключа или метки. По форме тела корпуса и расположению выводов корпуса делят на типы и подтипы.
Для правильной установки МС на плату корпуса имеют ключ, расположенный в зоне первого вывода. Ключ делается визуальным в виде металлизированной метки, выемки или паза в корпусе, выступа на выводе и пр. В поперечном сечении выводы корпусов имеют круглую, квадратную или прямоугольную форму. Шаг между выводами составляет 0,625; 1,0; 1,25; 1,7 и 2,5 мм.
Каждый тип корпуса имеет достоинства и недостатки. Корпус с планарными выводами для установки и монтажа требует на печатной плате почти вдвое больше площади, чем тех же размеров корпус, но с ортогональным расположением выводов. Однако жесткие штыревые выводы с ортогональной ориентацией относительно основания позволяют устанавливать микросхемы на плату без дополнительной поддержки даже при жестких вибрационных и ударных нагрузках. Пластмассовые корпуса дешевы, обеспечивают хорошую защиту от механических воздействий, но хуже других типов корпусов защищают от климатических воздействий, перегрева.
Основной недостаток корпусных микросхем и построенных на них устройств - большой объем вспомогательных конструктивных элементов: корпусов, выводов, элементов герметизации, и т. п., не несущих функциональной нагрузки. Использование корпусных микросхем приводит к непроизводительно большим затратам полезного объема и массы устройства, уменьшает на один - два порядка плотность компоновки элементов по сравнению с плотностью их размещения в кристалле или на подложке.
Модули первого уровня. При конструировании модулей первого уровня выполняются следующие работы:
· Изучение функциональных схем с целью выявления одинаковых по назначению подсхем и унификации их структуры в пределах изделия, что приводит к уменьшению многообразия подсхем и номенклатуры различных типов ТЭЗ.
· Выбор серии микросхем, корпусов микросхем, дискретных радиоэлементов.
· Выбор единого максимально допустимого числа выводов соединителя для всех типов модулей. За основу принимают число внешних связей наиболее повторяющегося узла с учетом цепей питания и нулевого потенциала и до 10 % запаса контактов на возможную модификацию.
· Определение длины и ширины печатной платы. Ширина платы, как правило, кратна или равна длине соединителя с учетом полей установки и закрепления платы в модуле второго уровня. Требования по быстродействию и количество устанавливаемых на плату компонентов влияют на ее длину.
· Собственно конструирование печатных платы.
· Выбор способов защиты модуля от перегрева и внешних воздействий.
Широкое распространение получила плоская компоновка модуля, когда компоненты схемы устанавливают в плоскости платы с одной или двух сторон. Для плоской компоновки характерна малая высота установки компонентов по сравнению с длиной и шириной платы. Простота выполнения монтажных работ, легкость доступа к компонентам и монтажу, улучшенный тепловой режим являются основными преимуществами плоской компоновки. Если для внешней коммутации модуля вводится соединитель, то подобную конструкцию называют типовой элемент замены (ТЭЗ) (рис. 8.2.1). На печатную плату устанавливают микросхемы 4 и для исключения влияния на работу микросхем помех по электропитанию - развязывающие конденсаторы 5.
![]() |
Лицевая панель выполняет одновременно несколько функций. На ней располагают элементы индикации и управления, контрольные гнезда, иногда электрические соединители, которые взаимодействуют с платой проводным монтажом. На панели в резьбовые отверстия помещают невыпадающие винты 2, которыми ТЭЗ жестко фиксируется на несущей конструкции модуля второго уровня, наносится адрес, позволяющий отличить ТЭЗ среди подобных в наборе РЭА, а также предотвратить неправильную установку ТЭЗ.
Панель и электрический соединитель крепят к печатной плате винтовым или заклепочным соединением. В условиях жестких механических воздействий плату ТЭЗ устанавливают на рамку, что увеличивает жесткость конструкции. При большом числе внешних цепей на ТЭЗ устанавливают несколько соединителей, располагающихся на одной или нескольких сторонах платы.
В блоках транспортируемой аппаратуры печатные платы модулей, как правило, закреплены жестко на несущей конструкции. Модули первого уровня взаимодействуют между собой приборными соединителями печатного монтажа, непосредственной подпайкой проводов к монтажным отверстиям плат, с использованием переходных штырьков и колодок.
Соединители обеспечивают быструю замену модулей и бывают прямого и косвенного сочленения. Вилка соединителя прямого сочленения является частью печатной платы с печатными ламелями, розетка соединителя - открытого и закрытого исполнения. В розетках открытого исполнения прорезь для установки печатной платы открыта с концов, что позволяет устанавливать в нее различные по ширине платы. Розетки закрытого типа ограничены с концов торцевыми поверхностями и служат для установки плат фиксированной ширины. Взаимная ориентация модуля и розетки осуществляется перегородкой в розетке и пазом под эту перегородку в концевой части печатной платы. Фиксация модуля в розетке открытого исполнения производится за счет пружинящих контактов розетки, в розетке закрытого исполнения могут быть защелки на торцевых поверхностях соединителя. Расстояние между соседними печатными ламелями выбирается из ряда: 1,25; 2,5;3,75 и 5 мм. Малое омическое сопротивление и высокая износостойкость контактной пары ламель - контакт розетки достигается покрытием медных поверхностей ламелей серебром, палладием, золотом, родием. Толщина покрытия варьируется в пределах 3-50 мкм.
При конструировании печатных плат необходимо решать задачи:
· выбор проводниковых и изоляционных материалов, формы и размеров печатных плат, способов установки компонентов;
· определение ширины, длины и толщины печатных проводников, расстояний между ними, диаметров монтажных и переходных отверстий, размеров контактных площадок;
· трассировка печатного монтажа.
Конструирование модулей уровней 2 и 3. К элементам уровней 2 и 3 конструктивной иерархии относятся панели, блоки, субблоки, шкафы, стойки. К ним можно отнести также тумбы, столы, корпуса частичные, комплексные и другие виды конструктивных элементов, характерные для тех или иных конструкционных систем.
Все они должны обеспечивать:
1) требуемую механическую жесткость и прочность;
2) удобство в сборке, наладке и эксплуатации;
3) оперативную замену вышедших из строя конструктивных элементов;
4) минимальный вес при сохранении требуемой жесткости; надежное закрепление конструктивных элементов;
5) максимальное использование унифицированных деталей и их взаимозаменяемость.
При разработке конструкции блоков, субблоков, панелей, стоек, и т. д. следует использовать такие конструкционные материалы и покрытия, которые отвечают предъявляемым требованиям по условиям эксплуатации.
Модули второго уровня. К модулям второго уровня относятся блоки различных видов, в том числе одноплатные бескаркасные приборы.
Несущей конструкцией одноплатного бескаркасного настольного прибора со встроенным блоком питания обычно является основание. Для придания жесткости в углах конструкции основания задается определенная форма и устанавливаются кронштейны для закрепления передней и задней панели, боковых стенок и крышки. Для закрепления модулей в основании прибора могут выполняться выдавки с отверстиями, в которые вставляют резьбовые втулки под винты.
На основание прибора устанавливают блок питания, все дополнительные устройства прибора, и объединительную плату электроники с соединителями для ТЭЗ и другими недостающими компонентами схемы прибора. В зарубежной литературе такую плату называют motherboard—материнской платой.
При конструировании блоков РЭА с достаточно большим количеством ТЭЗ применяют стеллажный, этажерочный и книжный варианты конструкций в форме параллелепипеда в негерметичном и герметичном исполнении.
![]() |
Блоки стеллажного типа (рис. 8.2.2) компонуются из ТЭЗ, которые устанавливаются в один или несколько рядов перпендикулярно монтажной панели. Основным конструктивным элементом блока является каркас 1 с монтажной панелью и соединителями 4. Относительно лицевой панели монтажная панель может занимать как горизонтальное, так и вертикальное поперечное или продольное положение.
В блоках книжной конструкции механическое объединение печатных плат между собой и с несущей конструкцией обеспечивается шарнирными узлами, позволяющими поворачивать платы подобно страницам книги. Шарнирные узлы могут выполняться совместно с рамкой, индивидуально, на шарнирный узел может устанавливаться одна или несколько плат. В рабочем состоянии платы объединяют в пакет стяжными винтами. Электрические соединения выполняют объемными проводами или печатными жгутами.
![]() |
В блоках с откидными платами (рис. 8.2.3) платы 2 механически объединяют между собой и с несущей конструкцией 4 подвижным соединением на оси 5, позволяющим обеспечивать откидывание любой платы и контроль этой платы в откинутом положении при функционировании блока. В рабочем состоянии платы объединяют в пакет и крепят к несущей конструкции. Электрические соединения выполняют объемными проводами, жгутами, соединителями. При разработке электромонтажной схемы блока необходимо предусмотреть подвижность монтажа, например, искусственным увеличением длины жгута для обеспечения откинутого положения платы. Возможны вертикальное и горизонтальное направление откидывания плат. В качестве недостатка этого вида компоновки следует отметить некоторое увеличение длины монтажных проводов.
![]() |
Этажерочная компоновка блока (рис. 8.2.4) достигается параллельным объединением между собой плат 3 и установочной панели в единую конструкцию стяжными винтами 2. Нужный шаг установки между платами пакета обеспечивается введением в конструкцию распорных втулок. Несущей конструкцией блока является установочная панель. Возможны вертикальная и горизонтальная установка панели в модуле высшего уровня. На выбор способа ориентации панели влияет конструкция, тепловой режим блока, характер и направление внешних механических воздействий. Межплатные электрические соединения в блоке осуществляют жгутовым монтажом, фиксированным паяным, разъемными соединениями. Внешние соединители должны устанавливаться на несущей конструкции блока 1. Преимуществом компоновки является простота конструкции, недостатком - низкая ремонтопригодность.
Ориентация и расстояния между платами ТЭЗ зависят от технических требований на аппаратуру, теплового режима, характера и направлений внешних воздействий. Выбор варианта конструкции диктуется производственными и техническими требованиями. Производственные условия рекомендуют применять однотипные конструкции ТЭЗ, элементов несущих конструкций, фиксации, крепления, монтажа.
В герметичные корпуса блоков устанавливают один или несколько пакетов модулей первого уровня, особо чувствительных к влиянию условий эксплуатации. Компактные герметичные блоки могут размещаться в любом месте объекта эксплуатации, что является преимуществом подобной компоновки, но при этом возрастают длины электрических соединений между блоками. Необходимо отметить, что в каждом конкретном случае выбор конструктивного исполнения блока решается комплексно и с учетом ограничений, накладываемых объектом эксплуатации.
Модули третьего уровня. Модуль третьего уровня конструктивной иерархии - стойка, шкаф - предназначен для установки и коммутации блоков или рам (объединенных конструктивно блоков) и обеспечения их работоспособности в составе РЭА.
![]() |
Конструктивной основой любой стойки является каркас, обычно изготавливаемый из стального уголкового профиля или труб прямоугольного или квадратного сечений. На рис. 8.2.5 представлен каркас шкафной стойки, который собирается из двух боковин 3, нижнего 8 и верхнего 2 оснований каркаса. Боковины и основания сварены из труб и в единую конструкцию объединяются болтовым соединением. Для этого в трубы боковин и оснований в местах болтовых соединений помещаются вкладыши, имеющие форму и размеры поперечного сечения отверстий труб. Вкладыши обеспечивают требуемую жесткость соединения и предохраняют от сминания трубы при завинчивании болтов деталей каркаса. Чаще всего каркас стойки выполняется цельносварным.
На каркасе закрепляется крышка 1 с вентиляционными отверстиями, два боковых щита 4 и подвешиваются дверцы 10. Для придания жесткости с внутренней стороны поверхности щита и дверцы приваривается элемент жесткости 5, проходящий по всей высоте дверцы и щита. Щит 4 к боковине каркаса 3 закрепляется с внутренней стороны стойки винтовым соединением. Для этого по периметру боковин 3 каркаса приваривают кронштейны 6, и, напротив, в соответствующих местах щита - скобы с отверстиями под резьбу. Щит подтягивается к каркасу и фиксируется по всей плоскости боковины 3. Дверцы 10 подвешиваются на петлях к подвескам 7 и имеют кнопку-ручку 9, при нажатии на которую защелка выходит из фиксируемого положения и под действием отжимной пружины свободный край дверцы отходит от каркаса. К использованию магнитных защелок нужно подходить осторожно, так как при этом неизбежно появление магнитных полей и возможно их влияние на работающую аппаратуру.
Тенденции развития электроники
На современном этапе развития электроники можно выделить следующие основные тенденции:
-увеличение количества выводов;
-уменьшение минимального шага выводов компонентов в корпусах различных типов;
-переход от расположения выводов по периметру к расположению выводов под корпусом;
-интеграция нескольких компонентов в один корпус.