Новые квантовые концепции




Творение и квантовая механика

Дон Б. Дейанг, д-р философии

К истории вопроса

14 декабря 1900 года называют днем рождения квантовой механики. Именно в этот день немецкий физик Макс Планк впервые выступил с изложением своей новой квантовой теории. В то время во всем мире благополучно считали, что классическая физика Исаака Ньютона полностью объясняет все физические процессы, протекающие в природе. Однако Планк показал, что многие глубинные тайны природы еще не раскрыты. В течение последнего столетия ученые бьются над явным и тайным смыслом квантовой механики. Существует несколько совершенно разных интерпретаций квантовой теории, в том числе и философских. Результаты ряда экспериментов согласуются с квантовой теорией с потрясающей точностью. Иные же квантовые предсказания явно бросают вызов здравому смыслу. Некоторые ученые - и креационисты, и представители светской науки - полностью отрицают квантовую механику. Так, креационист Томас Барнс (Thomas Barnes) предложил альтернативную модель (Барнс, 1983).

Четыре традиционных квантовых концепции

Макс Планк показал, что энергетическая суть объекта не может быть произвольной величиной. Напротив, энергия существует только в виде маленьких дискретных скоплений, называемых квантами. Увеличение энергии можно изобразить графически не как прямую, но как лестницу (см. рисунок 1). Квантовые эффекты становятся очевидными только на уровне микромира - атомных частиц. Для относительно больших объектов, таких, например, как человеческий организм, индивидуальные энергетические ступени ничтожно малы и незаметны. Иначе мы обнаружили бы, что живем в странном квантовом мире, где все происходит скачкообразно, как в мигающем свете стробоскопа.

Вторая широко известная концепция заключается в том, что свет и материя имеют как волновую, так и корпускулярную природу. Корпускулярную природу света иллюстрирует фотоэкспонометр. В этом приборе случайные фотоны сталкиваются с электронами, наподобие мраморных шариков, и образуют электрический ток, который показывает интенсивность света. Волновая же природа электронов используется в электронном микроскопе для создания увеличенных изображений. Как и в случае квантования энергии, волновая природа относительно больших объектов незаметна.

Третья концепция носит название "принципа неопределенности". Этот принцип был сформулирован в 1927 году Вернером Гейзенбергом. Он описывает неотъемлемые ограничения, заложенные в природе измерения физических величин. Например, в случае, когда мы можем определить положение частицы в пространстве с большей точностью, ее движение (по сути, импульс), а следовательно, и положение в будущем, определяются с гораздо меньшей точностью. Подобным образом, точное знание о движении частицы затрудняет определение ее местонахождения в данный момент. Это ограничение весьма далеко от классической физики, где считается возможным точное определение координат и скорости объекта. В этой, более ранней, детерминистской концепции считается возможным рассчитать точный курс будущего движения объекта. Принцип неопределенности отвергает это точное знание для любой частицы. Отметим, что этот принцип налагает ограничения не на Творца, Который создал частицы и управляет ими, но лишь на нас самих.

И наконец, четвертая концепция. Частицы обычно описывают с помощью таких свойств, как масса, скорость, размер и электрический заряд. В квантовой же механике эти величины могут быть включены как параметры в волновую функцию, обозначаемую символом y. Эта волновая функция представляет собой описательную модель частиц. Она математически сложна и не поддается наблюдению. Квадрат y (со сложным сопряжением), как считается, дает возможность определить местонахождение частицы - концепция очень полезная, но весьма туманная. Далее, волновая функция y может быть заменена знаменитым уравнением, выведенным в 1926 году Эрвином Шредингером. С помощью этого уравнения могут быть рассчитаны многие свойства частиц. Вычисления эти окутаны завесой тайны, хотя их результаты хорошо согласуются с экспериментальными данными. Уравнение Шредингера невозможно вывести из теории; оно просто "работает". Альберт Эйнштейн недолюбливал это уравнение и никогда не принимал его полностью.

Новые квантовые концепции

Теперь рассмотрим три новые квантовые концепции. Каждая из них в последние годы была подтверждена экспериментально. Во-первых, "нелокальность" частиц. Эксперименты по интерференции показывают, что отдельный электрон способен "распространяться" и одновременно проходить через два разных отверстия. Таким образом, электрон не является отдельной частицей и может быть описан как "волновой пакет", который с течением времени способен сжиматься или расширяться. Сходные эксперименты также показали нахождение атома бериллия в двух близких точках одновременно (Monroe и др., 1996).

Во-вторых, выяснилось, что определенные парные частицы могут каким-то образом влиять друг на друга, находясь даже на большом расстоянии (Pool, 1998). Если воздействовать на одну из частиц, то ее "партнер" немедленно отреагирует на это, даже находясь во многих милях от нее. Такое неожиданное поведение можно сравнить с экстрасенсорикой или даже с колдовством вуду. Это привело к интригующим сообщениям о возможности мгновенной "телепортации" человека из одного места в другое. Тут можно усмотреть и богословскую связь с будущим состоянием и возможностями верующих.

В-третьих, эффект Казимира демонстрирует существование виртуальных частиц в абсолютном вакууме. В лабораторном вакууме было измерено бесконечно малое давление, очевидно, этих эфирных частиц (Baker, 1997). Затем с помощью этих виртуальных частиц пытаются объяснить происхождение Вселенной. Говорится, что флуктуация виртуальных частиц на уровне квантовой механики дала толчок, приведший к Большому Взрыву. Однако это объяснение не выдерживает критики как минимум по двум причинам. Во-первых, теория Большого Взрыва постулирует отсутствие предвечного пространства или вакуума, что не оставляет места для флуктуации виртуальных частиц. Во-вторых, виртуальные частицы, если они существуют, формируются как материя и антиматерия в равных количествах. Однако наша Вселенная, по всей видимости, почти полностью состоит из обычной материи. Антиматерия встречается исключительно редко.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-12-28 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: