Одним из выдающихся естествоиспытателей, посвятивших себя изучению процессов, протекающих в биосфере, был академик Владимир Иванович Вернадский. Он стал основоположником научного направления, названного им биогеохимией, которое легло в основу современного учения о биосфере.
В 1926 г. В.И. Вернадский опубликовал в Ленинграде книгу под названием «Биосфера», которая ознаменовала рождение новой науки о природе, о взаимосвязи с ней человека. В этой работе биосфера впервые показана как единая динамическая система, населенная и управляемая жизнью, живым веществом планеты. «Биосфера - организованная, определенная оболочка земной коры, сопряженная с жизнью». В работах по биосфере ученый показал, что взаимодействие живого вещества с веществом косным есть часть большого механизма земной коры, благодаря которому происходят разнообразные геохимические и биогенные процессы, миграции атомов, осуществляется их участие в геологических и биологических циклах.
Основа концепции биосферы - представление о живом веществе. Более 90 % всего живого вещества приходится на наземную растительность (98 % биомассы суши). Живое вещество - наиболее мощный геохимический и энергетический фактор, ведущая сила планетарного развития. Основной источник биохимической активности организмов - это солнечная энергия, используемая в процессе фотосинтеза зелеными растениями и некоторыми микроорганизмами для создания органического вещества, которое, в свою очередь, обеспечивает пищей и энергией остальные организмы. Фотосинтез привел к накоплению в атмосфере свободного кислорода, образованию озонового слоя, защищающего от ультрафиолетового и жесткого космического излучения. Он поддерживает современный газовый состав атмосферы. Жизнь на Земле всегда существовала в форме сложно организованных комплексов разнообразных организмов (биоценозов). Вместе с тем живые организмы и среда их обитания образуют целостные системы - биогеоценозы. Питание, дыхание и размножение организмов и связанные с ними процессы создания, накопления и распада органического вещества обеспечивают постоянный круговорот вещества и энергии. С этим круговоротом связана миграция атомов химических элементов через живое вещество. Так, весь атмосферный кислород оборачивается через живое вещество за 2000 лет, углекислый газ за 300 лет. Состав самих организмов характеризуется большим разнообразием органических и вообще химических соединений. Благодаря живому веществу на планете образовались почвы и органическое минеральное топливо (торф, уголь, возможно, нефть).
|
В.И. Вернадский впервые показал, что химическое состояние наружной коры нашей планеты всецело находится под влиянием жизни и определяется живыми организмами, с деятельностью которых связан великий планетарный процесс - миграция химических элементов в биосфере. Эволюция видов, отмечал ученый, приводящая к созданию форм жизни, устойчива в биосфере и должна идти в направлении увеличения биогенной миграции атомов.
Биосфера представляет собой сложнейшую планетарную оболочку жизни, населенную организмами, составляющими в совокупности живое вещество. Это самая крупная (глобальная) экосистема Земли - область системного взаимодействия живого и косного вещества на планете. Совокупная деятельность живых организмов в биосфере проявляется как геохимический фактор планетарного масштаба.
|
Биосфера охватывает нижнюю часть атмосферы до высоты озонового экрана (20-25 км), верхнюю часть литосферы (кора выветривания) и всю гидросферу до глубинных слоев океана. В.И. Вернадский отмечал, что «пределы биосферы обусловлены прежде всего полем существования жизни». На развитие жизни, а следовательно, и на границы биосферы оказывают влияние многие факторы и прежде всего наличие кислорода, углекислого газа, воды в ее жидкой фазе. Ограничивают область распространения жизни и слишком высокие или низкие температуры. Элементы минерального питания также влияют на развитие жизни. К ограничивающему фактору можно отнести и сверхсоленую среду (превышение концентрации солей в морской воде примерно в 10 раз). Лишены жизни подземные воды с концентрацией солей свыше 270 г/л.
В планетарной биосфере выделяют континентальную и океаническую биосферы, которые отличаются геологическими, географическими, экологическими, биологическими, физическими и другими условиями. Нижний предел распространения живого ограничивается дном океана (глубина около 11 км) или изотермой в 100 °С в литосфере (по данным сверхглубокого бурения на Кольском полуострове, эта цифра составляет около 6 км). Фактически, жизнь в литосфере прослеживается до глубины 3-4 км. Таким образом, вертикальная мощность океанической биосферы составляет 11 км. Вверх, в атмосферу, биосфера простирается не выше наибольших плотностей озонового экрана, что составляет 22-24 км. Следовательно, предел протяженности биосферы выражается цифрой 39-40 км.
|
Вещественный состав биосферы также разнообразен. В.И.Вернадский включает в него семь глубоко разнородных, но геологически не случайных частей:
– живое вещество;
– биогенное вещество – рождаемое и перерабатываемое живыми организмами (горючие ископаемые, известняки и т.д.);
– косное вещество, образуемое без участия живых организмов (твердое, жидкое и газообразное);
– биокосное вещество – косное вещество, преобразованное живыми организмами (вода, почва, кора выветривания, илы);
– вещество в радиоактивном распаде (элементы и изотопы уранового, ториевого и актиноуранового ряда);
– вещество рассеянных атомов земного происхождения и космических излучений;
– вещество космического происхождения в форме метеоритов, космической пыли и др.
Из сказанного вытекает, что биосфера является результатом сложнейшего механизма геологического и биологического развития и взаимодействия косного и биогенного вещества. С одной стороны, это среда жизни, а с другой - результат жизнедеятельности. Главная специфика современной биосферы - это четко направленные потоки энергии и биогенный (связанный с деятельностью живых существ) круговорот веществ.
Разрабатывая учение о биосфере, В.И. Вернадский пришел к выводу, что главным трансформатором космической энергии является зеленое вещество растений. Только растения способны поглощать энергию солнечного излучения и синтезировать первичные органические соединения. Для объяснения большой суммарной энергии биосферы ученый произвел расчеты, которые действительно показали огромное значение фотосинтезирующих растений в создании общей органической массы. Он подсчитал, что поверхность Земли составляет меньше одной десятитысячной поверхности Солнца. Общая же площадь трансформационного аппарата зеленых растений в зависимости от времени года составляет уже от 0,86 до 4,2 % площади поверхности Солнца. Разница колоссальная. Этот зеленый энергетический потенциал и лежит в основе сохранения и поддержания всего живого на нашей планете.
3. Живое вещество планеты. Функции живого вещества
Учение о живом веществе является одним из центральных звеньев концепции биосферы. Исследуя процессы миграции атомов в биосфере, В.И. Вернадский подошел к вопросу о генезисе (происхождении, возникновении) химических элементов в земной коре, а после этого и к необходимости объяснить устойчивость соединений, из которых состоят организмы. Анализируя проблему миграции атомов, он пришел к выводу, что «нигде не существуют органические соединения, независимые от живого вещества». «Под именем живого вещества, - писал Вернадский в 1919 г., - я буду подразумевать всю совокупность всех организмов, растительности и животных, в том числе и человека. С геохимической точки зрения, эта совокупность организмов имеет значение только той массой вещества, которая ее составляет, ее химическим составом и связанной с ней энергией. Очевидно, только с этой точки зрения, имеет значение живое вещество и для почвы, так как, поскольку мы имеем дело с химией почв, мы имеем дело с частным проявлением общих геохимических процессов».
Тогда же ученый впервые высказал мысль о совместном нахождении химических элементов в живом веществе, которое определяется биологическими свойствами организмов, а не химическими свойствами элементов. К основным таким элементам Вернадский относил С, О, Н, N, S, Р, С1, К, Mg, Са, Na, Fe, к которым обычно присоединяют еще Si, Mn, F, J, Со, В, Ва, Sr, Pb, Zn, Ag, Вг, V и т. д. В живом организме всегда содержится не менее 20 - 25 химических элементов, эти элементы оказываются вместе после гибели живого в исключительно малых объемах, высоких концентрациях и в соотношениях, которые определяет жизнь.
Итак, живое вещество биосферы - это совокупность всех ее живых организмов. Главное предназначение живого вещества и его неотъемлемый атрибут - накопление свободной энергии в биосфере. Обычная биогеохимическая энергия живого вещества производится прежде всего путем размножения.
Научные идеи В.И. Вернадского о живом веществе, о космичности жизни, о биосфере и переходе ее в новое качество - ноосферу - своими корнями уходят в XIX - начало XX в., когда философы и естествоиспытатели предприняли первые попытки осмыслить роль и задачи человека в общей эволюции Земли. Именно их усилиями человек начал свое продвижение к вершинам естественной эволюции живого, постепенно занимая экологическую нишу, отведенную ему природой.
В 30-е гг. XX в. В.И. Вернадский из общей массы живого вещества выделяет человечество как его особую часть. Такое обособление человека от всего живого стало возможным по трем причинам.
Во-первых, человечество является не производителем, а потребителем биогеохимической энергии. Такой тезис требовал пересмотра геохимических функций живого вещества в биосфере.
Во-вторых, масса человечества, исходя из данных демографии, не является постоянным количеством живого вещества.
В-третьих, его геохимические функции характеризуются не массой, а производственной деятельностью. Характер усвоения человечеством биогеохимической энергии определяется разумом человека. С одной стороны, человек - это кульминация бессознательной эволюции, «продукт» спонтанной деятельности природы, а с другой - зачинатель нового, разумно направленного этапа самой эволюции.
Какие же характерные особенности присущи живому веществу? Прежде всего, это огромная свободная энергия. В процессе эволюции видов биогенная миграция атомов, т.е. энергия живого вещества биосферы, увеличилась во много раз и продолжает расти, ибо живое вещество перерабатывает энергию солнечных излучений, атомную энергию радиоактивного распада и космическую энергию рассеянных элементов, приходящих из нашей Галактики. Живому веществу присуща также высокая скорость протекания химических реакций по сравнению с веществом неживым, где похожие процессы идут в тысячи и миллионы раз медленнее. Например, некоторые гусеницы в сутки могут переработать пищи в 200 раз больше, чем весят сами, а одна синица за день съедает столько гусениц, сколько весит сама.
Для живого вещества характерно то, что слагающие его химические соединения, главнейшими из которых являются белки, устойчивы только в живых организмах. После завершения процесса жизнедеятельности исходные живые органические вещества разлагаются до химических составных частей.
Живое вещество существует на планете в форме непрерывного чередования поколений, благодаря чему вновь образовавшееся генетически связано с живым веществом прошлых эпох. Это - главная структурная единица биосферы, определяющая все другие процессы поверхности земной коры. Для живого вещества характерно наличие эволюционного процесса. Генетическая информация любого организма зашифрована в каждой его клетке. При этом клеткам изначально предначертано быть самими собой, за исключением яйцеклетки, из которой развивается целый организм.
В.И.Вернадский отмечал, что живые организмы планеты - это наиболее постоянно действующая и могущественная по своим конечным последствиям химическая сила. Он указывал, что живое вещество неотделимо от биосферы, является ее функцией и одновременно «одной из самых могущественных геохимических сил нашей планеты». Круговорот отдельных веществ В.И.Вернадский назвал биогеохимическими циклами. Эти циклы обеспечивают важнейшие функции живого вещества в целом. Ученый выделил пять таких функций.
Газовая функция. Осуществляется зелеными растениями, выделяющими кислород в процессе фотосинтеза, а также всеми растениями и животными, выделяющими углекислый газ в результате дыхания. Происходит также круговорот азота, связанного с деятельностью микроорганизмов. В.И.Вернадский писал, что все газы, образующиеся в биосфере, теснейшим образом связаны своим происхождением с живым веществом, всегда биогенны и изменяются главным образом биогенным путем.
Основные газовые фунции, по В.И.Вернадскому, следующие.
■ Кислородно-углекислотная, носителем которой являются хлорофилльные растения. Ими создается подавляющая масса кислорода на планете. Из-за того что ночью фотохимический процесс прекращается, а на смену ему приходит процесс образования углекислоты, эта функция называется кис- лородно-углекислотной.
■ Углекислотная (отдельная от кислородной). В результате жизнедеятельности животных, грибов и бактерий создается биогенная углекислота.
■ Озонная и перекисьводородная. В.И.Вернадский считал, что озон и перекись водорода являются продуктами жизни (через кислород, идущий на образование озона и перекиси). Озон, образуясь из биогенного кислорода, защищает биосферу от губительного ультрафиолетового излучения.
■ Азотная. В.И.Вернадский полагал, что свободный азот атмосферы создается живым веществом почвы.
■ Углеводородная. Биогенные газы - углеводороды - создаются живым веществом. Их роль в биосфере очень велика, но мало изучена.
■ Водная, проявляющаяся в биогенном круговороте воды. Биогенная роль водной функции проявляется в том, что состояние растительного покрова самым тесным образом связано с влажностью воздуха, содержанием воды в почве и подпочве. Наиболее ярко она выражена в лесах суши, сведение которых ведет к изменению и перестройке всего биогеохимического круговорота воды в биосфере.
■ Сероводородная и сульфидная функции. Проявляются в действии окислительно-восстановительной системы. Они играют большую роль во всех почвах, особенно в условиях щелочной и нейтральной реакции среды. В присутствии органического вещества и при недостатке кислорода в почве через цепь химических реакций образуется сероводород, который уходит в атмосферу. Система сульфаты<->сульфиды сдвигается в сторону сульфидов. При этом развивается процесс десульфирования или десульфации почвенного раствора, грунтовых или глубинных подземных вод. В результате наблюдается постепенное исчезновение из почвы сернокислых солей и под- щелачивание раствора. Такие процессы характерны для луговых солончаковых почв, торфяных болот, донных отложений застойных водоемов, полей орошаемого риса.
В период просыхания переувлажненных почв наблюдается снижение доступа кислорода и уровня грунтовых вод. В связи с этим происходит сдвиг окислительно-восстановительной системы в другую сторону, в результате чего развиваются окислительные процессы. В почвах и грунтах образуются соединения серы, окисляемые в дальнейшем до серной кислоты и сульфатов. Часть серы из системы утрачивается в виде сероводорода.
Таким образом, образование сероводорода является следствием биогенной деятельности животных и бактерий почвы. Превращение органической серы бактериями и животными в конечный продукт - сероводород и восстановление минеральной серы бактериями в процессе десульфирования в сероводород - две стадии сероводородной функции живых организмов.
Концентрационная функция. Проявляется в способности живых организмов накапливать в своих телах многие химические элементы (на первом месте стоит углерод, среди металлов - кальций). Способность концентрировать элементы из разбавленных растворов - характерная особенность живого вещества. Например, морские организмы активно накапливают микроэлементы, тяжелые металлы (ртуть, свинец, мышьяк), радиоактивные элементы.
В.И.Вернадский различал:
1) концентрационные функции I рода, когда живым веществом из окружающей среды концентрируются те химические элементы, которые содержатся во всех без исключениях организмах (Н, С, N, О, Na, Mg, Al, Si, P, S, Cl, K, Ca, Fe);
2) концентрационные функции II рода, когда наблюдается накопление химических элементов, которые в живых организмах не встречаются или могут встречаться в очень малых количествах. Например, голотурии способны накапливать ванадий. Дождевые черви могут накапливать цинк, медь, свинец и кадмий в своих тканях. Водоросли рода ламинария накапливают в себе йод.
Окислительно-восстановительная функция. Выражается в химических превращениях веществ в процессе жизнедеятельности организмов. В результате этого образуются соли, оксиды, новые вещества. С данной функцией связано формирование железных и марганцевых руд, известняков и т.п.
Биохимическая функция. Определяется как размножение, рост и перемещение в пространстве живого вещества. Все это приводит к круговороту химических элементов в природе, их биогенной миграции.
В.И.Вернадский выделял I биохимическую функцию, которая связана с питанием, дыханием и размножением организмов, и II биохимическую функцию, которая связана с разрушением тел живых организмов после их смерти. При этом происходит ряд биохимических превращений: живое тело —> биокосное —> косное.
Функция биогеохимической деятельности человека. Связана с биогенной миграцией атомов, многократно усиливающейся под влиянием хозяйственной деятельности человека и его разума. Человек в ходе хозяйственной деятельности разрабатывает и использует для своих нужд большое количество веществ земной коры, в том числе таких, как уголь, газ, нефть, торф, сланцы, многие руды. Одновременно происходит антропогенное поступление в биосферу чужеродных веществ в количествах, превышающих допустимое значение. Это привело к кризисному противостоянию человека и природы. Главной причиной надвигающегося экологического кризиса считается технократическая концепция, рассматривающая биосферу, с одной стороны, как источник физических ресурсов, с другой - как сточную трубу для удаления отходов.
В настоящее время мировое хозяйство ежегодно выбрасывает в атмосферу:
■ более 250 млн т мелкодисперсных аэрозолей;
■ 200 млн т оксида углерода;
■ 150 млн т диоксида серы;
■ 120 млн т золы;
■ более 50 млн т углеводородов;
■ 2,5 млрд т (!) оксидов азота.
Естественный круговорот атомов в атмосфере просто не успевает за техногенными выбросами. Только за счет сжигания угля в энергетических установках в окружающую среду поступает мышьяка, урана, кадмия, бериллия в десятки раз, а ртути - в тысячи раз больше, чем вовлекается в природный биохимический круговорот.
Жизнь на нашей планете существует в неклеточной и клеточной формах. Неклеточная форма живого вещества представлена вирусами, которые лишены раздражимости и собственного синтеза белка. Простейшие вирусы состоят лишь из белковой оболочки и молекулы ДНК (дезоксирибонуклеиновой кислоты) или РНК (рибонуклеиновой кислоты), составляющей сердцевину вируса. Иногда вирусы выделяют в особое царство живой природы - Vira. Они могут размножаться только внутри определенных живых клеток. Вирусы повсеместно развиты в природе и являются опасным противником всего живого. Поселяясь в клетках живых организмов, они вызывают их смерть. Описано около 500 вирусов, поражающих теплокровных позвоночных, и около 300 вирусов, нападающих на высшие растения. Более половины болезней человека обязаны своим развитием мельчайшим вирусам (они в 100 раз мельче бактерий). Достаточно назвать несколько страшных болезней, вызываемых вирусами, чтобы осознать угрозу этих существ: полиомиелит, оспа, грипп, инфекционный гепатит, желтая лихорадка и др.
Клеточные формы жизни представлены прокариотами (организмами, не имеющие ограниченного мембраной ядра) и эукариотами (организмами, клетки которых содержат оформленные ядра). К прокариотам относятся различные бактерии. Эукариоты - все высшие животные и растения, а также одноклеточные и многоклеточные водоросли, грибы и простейшие.
4. Круговорот веществ и биогеохимические циклы важнейших химических элементов в биосфере
Круговорот воды, а также круговорот биогенных элементов, обусловленный синтезом и распадом органических веществ в биосфере называют круговоротом веществ. Это многократное участие веществ в процессах, протекающих в атмосфере, гидросфере и литосфере. Деятельность живых организмов сопровождается извлечением из окружающей их неживой природы больших количеств минеральных веществ. После смерти организмов составляющие их химические элементы возвращаются в окружающую среду. Так возникает круговорот веществ в природе, т.е. циркуляция веществ между атмосферой, гидросферой, литосферой и живыми организмами. Таким образом накапливаются полезные ископаемые - уголь, нефть, газ, известняки и т.п.
Глобальный биогеохимический круговорот в биосфере не является целиком замкнутым. В отдельных случаях степень повторяющегося воспроизводства некоторых циклов составляет 90-98 %. Такая неполная замкнутость биогеохимических циклов в масштабах геологического времени приводит к дифференциации элементов и накоплению их в различных природных сферах Земли.
Непрерывному круговороту в биосфере Земли подвергаются только вещества. Когда речь идет об энергии, можно говорить только о ее направленном потоке. Передаваясь по трофическим цепям, энергия постепенно рассеивается. Частично она накапливается в земной коре в алюмосиликатах в результате разложения органических остатков.
Обновление живого вещества биосферы происходит за 8 лет. Фитомасса суши (биомасса наземных растений) обновляется за 14 лет. Масса живого вещества океана обновляется за 33 дня, а его фитомасса - за 1 день. Полная смена вод в гидросфере осуществляется за 2800 лет, смена кислорода в атмосфере - за несколько тысяч лет (до 3000), а углекислого газа - за 6,3 года. Общепланетные климатические и геохимические циклы, охватывающие атмосферу, океан, толщу донных осадков и кору выветривания, протекают крайне медленно и исчисляются сотнями тысяч и миллионами лет. (Здесь следует заметить, что вмешательства человека, происходящие в крайне короткие сроки, искусственно иитеисифицируют эти процессы, что чревато тяжелыми последствиями.)
Развитие и функционирование живого вещества изменили океан, атмосферу, поверхность земной коры, привели к образованию почвенного покрова. Почва вместе с растениями и животными образует на суше сложную экологическую систему, которая связывает и перераспределяет солнечную энергию, углерод атмосферы, влагу, кислород, водород, фосфор, азот, серу, кальций и другие элементы-биофилы. Те же функции выполняет и Мировой океан с водными растениями и планктоном. Жизнедеятельностью растительных организмов и их взаимодействием с животными, микроорганизмами и неживой природой обеспечивается механизм фиксации, накопления и перераспределения космической энергии, поступающей на Землю. Эта энергия аккумулируется в органических соединениях, слагающих биомассу живого вещества.
За миллиарды лет эволюции Земли на планете сложились великий биогеохимический круговорот и дифференциация химических элементов в природе. На первых этапах своей истории человек стал звеном этого круговорота веществ и потока энергии вместе с животным населением. Однако в настоящее время хозяйственная деятельность человека привносит значительные изменения в биогеохимические циклы элементов в биосфере. Например, в результате производства удобрений азот атмосферы возвращается в почвы в размерах, превышающих его биологическую фиксацию. Рассеянные в виде следов ртуть, свинец, кадмий добываются, концентрируются и включаются в больших количествах в биосферу.
Элементами круговорота веществ в природе являются:
■ регулярно повторяющиеся или непрерывно текущие процессы переноса энергии, образование и синтез новых соединений;
■ направленные процессы последовательного преобразования, разложения и деструкции синтезированных ранее соединений под влиянием биогенных или абиогенных воздействий среды;
■ постоянное или периодическое образование простейших минеральных и органоминеральных компонентов в газообразном, жидком или твердом состоянии.
Важнейшую роль в биосфере играют круговороты воды, углерода, кислорода, азота, фосфора, серы.
Круговорот воды. Под влиянием энергии Солнца и жизнедеятельности биоценозов в биосфере поддерживается определенный баланс воды. Механизм, поддерживающий этот баланс, хорошо известен - это круговорот воды. Мировой баланс воды - величина довольно стабильная. Для существования жизни и развития человеческой цивилизации наиболее важной частью в этом балансе являются пресные воды, которые составляют речной сток, содержатся в озерах и подземных горизонтах.
Интересно, что объем первоначальных запасов воды на Земле практически не изменился. Сколько бы раз вода ни употреблялась человеком для своих нужд, общее количество ее на Земле не уменьшается. Благодаря «водяному колесу природы» - круговороту - водные молекулы постоянно циркулируют между океаном, атмосферой и земной поверхностью. В результате этого гидросфера стала планетарной транспортной системой, а также планетарным аккумулятором органического, неорганического вещества и различных химических элементов.
В среднем в год с поверхности всех водоемов испаряется порядка 519 тыс. км3 воды в год. Более 90 % ее возвращается в океан с атмосферными осадками и лишь 10 % выпадает в виде осадков на поверхности материков. В некоторых конкретных случаях количество испаренной воды и скорость испарения столь велики, что не восполняются поверхностными стоками. Например, сток воды в Средиземное море не восполняет количества испаренной с его поверхности воды, поэтому в Гибралтаре течение направлено всегда из Атлантики.
Современный круговорот воды происходит с участием биосферы и человека. Цикл его таков: вода, испаренная с поверхности водоемов, почвой, растениями, животными, конденсируется, образуя облака, и выпадает в виде осадков. Часть ее попадает в водоемы непосредственно, часть питает подземные воды, часть потребляется животными и растениями и снова возвращается в Мировой океан уже как продукт жизнедеятельности, часть воды используется машинами, механизмами и промышленностью и возвращается в биосферу в виде пара и отработанной технической воды (рис. 1).
Вода, будучи сильнейшим растворителем, играет огромную роль в геохимических процессах. Промывая толщи горных пород, она вовлекает в круговорот большую часть химических элементов Периодической системы элементов Д.И. Менделеева. На Земле нет дистиллированной воды. Любая вода содержит растворенные соли, газы, органические и коллоидные вещества. Совместно с циркуляцией воды в биосфере растворенные в ней элементы также участвуют в круговороте.
Рис. 1. Гидрологический цикл и накопление воды |
Круговорот углерода. Углерод по распространению на Земле занимает. 16-е место среди всех элементов. В наиболее общем виде круговорот углерода можно представить как процесс освобождения и связывания диоксида углерода (С02), включая его растворение в воде океанов (рис. 2).
В.И. Вернадский в своем труде о биосфере писал: «Преобладающее, особое значение атомов углерода свойственно не только живым организмам, это свойство биосферы, ее живой и косной материи, до известной степени всей земной коры». С углеродом связан процесс возникновения и развития жизни на Земле. В атмосфере его содержится 0,046 % в форме углекислого газа и 0,00012 % в форме метана; в земной коре - 0,35 % и в живом веществе - около 18 %. Он вовлекается в цепь непрерывных реакций и биогеохимических круговоротов, соединяясь с большинством элементов самыми разнообразными способами. В то же время связь атомов углерода между собой и с другими атомами (кислорода, водорода, серы, фосфора и др.) может быть разрушена под воздействием природных факторов.
Предполагается, что углерод распределен в довольно тонком слое земной коры, в атмосфере в виде диоксида и оксида углерода и в животной и растительной биомассах. Основные запасы углерода в природе содержатся в минералах и горных породах главным образом в форме карбонатов (СаСОэ) и гидрокарбонатов (Са(НС03))2, представляющих собой растворимые и нерастворимые донные отложения в Мировом океане, накопившиеся за миллионы лет геологической истории Земли. Этот процесс продолжается и в настоящее время.
Рисунок 2 – Круговорот углерода в биосфере
В несвязанном состоянии углерод встречается в виде алмазов (наибольшие месторождения в Южной Африке и Бразилии) и графита (наибольшие месторождения в Германии, Шри-Ланке и России). Каменный уголь содержит до 90 % углерода. В связанном состоянии углерод входит также в разные горючие ископаемые, в карбонатные минералы, например в кальцит и доломит, а также в состав всех биологических веществ.
Углекислый газ, содержащийся в воздухе и воде, составляет запас углерода, участвующего в создании биомассы. Содержание С02 в атмосфере нестабильно (менее 1 %), и подвержено сезонным изменениям. В настоящее время наблюдается его увеличение, связанное с антропогенным воздействием. Если 100 лет назад содержание углекислого газа составляло примерно 270 частей на 1 млн, то сегодня эта цифра выросла до 350 частей на 1 млн.
Также постепенно растет (на 1-2 % ежегодно) содержание в атмосфере метана и оксида углерода, что тоже связано с сельским хозяйством и энергетикой. В тех районах, где в процессе выработки энергии потребляется большое количество ископаемого топлива, зарегистрирован небольшой, но неуклонный рост концентрации оксидов азота и серы.
Если сравнить содержание диоксида углерода в водах (реки, озера, моря), атмосфере и океане, то окажется, что Мировой океан содержит более 98 % общего запаса углерода атмосферы и гидросферы.
Следует подчеркнуть, что цикл биологического круговорота углерода не замкнут. Углерод может выходить из него на довольно длительный срок в виде карбонатов, торфов, сапропелей, гумуса и других органических осадков. В разных циклах биологического круговорота участвует около 98-99 % ассимилированного углерода.
Если в круговороте кислорода зеленые растения являются его поставщиком в атмосферу, то в круговороте углерода они являются мощным механизмом, улавливающим его из атмосферы в виде углекислого газа и связывающим в органические соединения. В процессе фотосинтеза углерод ассимилируется растениями и переводится в углеводы. В процессе же дыхания происходит обратный процесс: углерод органических соединений превращается в диоксид углерода.
Ежегодно наземные растения связывают около 18 млрд т углерода, растения морей - 25 млрд т. Еще одним мощным утилизатором углерода являются морские организмы, которые используют его для образования своих скелетов. В дальнейшем остатки отмерших морских организмов опускаются на дно морей и океанов и образуют мощные отложения известняков. Между углекислым газом атмосферы и водой океана существует подвижное равновесие. Организмы поглощают углекислый кальций, создают свои скелеты, а затем из них образуются пласты известняков.
Проследим «путешествие» атома углерода, одного из мириад себе подобных, в биосфере. Произошло извержение вулкана. Наконец-то для нашего атома закончилось время заточения глубоко в недрах Земли, и он вырывается на свободу в атмосферу. В виде молекулы углекислого газа, связанный с атомами кислорода, он беззаботно «плавает» в атмосфере в течение нескольких лет. И вот однажды растение или дерево бесцеремонно захватывают его, вовлекают в процесс фотосинтеза и превращают в более восстановленную химическую форму. Если же наш атом будет проплывать над океаном, то, скорее всего, попав в толщу воды, он превратится в ион бикарбоната и будет блуждать тысячи лет между атмосферой, почвами и океаном. В конце концов свобода обернется для него захоронением в океанических отложениях, где наш углерод, лишенный движения, просуществует в течение 100 млн лет или более.
Подсчитано, что среднестатистический атом углерода за всю историю Земли (4-4,5 млрд лет) мог совершить до 20 таких путешествии между осадочными породами и атмосферой.
Наличие углерода непосредственно связано с наличием кислорода, поскольку на каждую молекулу кислорода должна где-то существовать и молекула восстановленного углерода. Это позволяет оценивать запасы углерода в биосфере величиной порядка 2-1015—2* 1016 т. Казалось бы, такого количества углерода должно хватить на многие миллионы лет. Так оно и есть. Сложность, однако, в том, что большая часть этого элемента распылена. А то, что мы извлекаем на поверхность Земли в виде угля, нефти и других полезных ископаемых, это лишь малая доля общего количества восстановленного углерода в осадочных породах.
В воде углекислый газ растворяется в 35 раз лучше кислорода. От его содержания зависит количество растворенных гидрокарбонатов, т.е. жесткость воды. Если содержание С02 в воде уменьшается, то выпадает осадок нерастворенного карбоната, который будет растворен при восстановлении равновесия между углекислым газом и гидрокарбонатом.
В технике и быту нарушение углекислотного равновесия приводит к образованию накипи в котлах ТЭЦ и других системах, использующих воду. В природных условиях результатом этой реакции является образование полостей в земной коре, сталактитов и сталагмитов.
Круговорот кислорода является очень сложным циклом. В него вовлечено большое количество представителей органического и неорганического мира, а также водород и вода, растворяющая кислород (рис. 3). Кислород постоянно циркулирует в океане, биосфере и осадочных породах. Содержание кислорода в воде зависит от его растворимости на поверхности и фотосинтеза водорослями. Загрязнение воды взвешенными частицами уменьшает ее прозрачность, увеличивает рассеяние света и снижает активность фотосинтеза. Содержание кислорода в воде является одним из показателей ее здоровья. По данным замеров, в большинстве наших водоемов эта величина сейчас ниже нормы.
Кислород является самым распространенным элементом на Земле. В гидросфере его содержится 85,82 % по массе, в литосфере - 47 %, в атмосфере - 23,15 %.
Рис. 3. Круговорот кислорода в биосфере |
В процессе сгорания ископаемого топлива образуется довольно большое количество воды, которая в конечном счете потребляется растением и разлагается в процессе фотосинтеза на атомарный водород и атомарный кислород. Высвободившийся кислород снова поступает в атмосферу и используется для создания органического вещества. Круг замыкается.