Методы определения ширины запрещенной зоны Eg




 

В настоящее время экспериментальные и теоретические методы исследования зонной структуры твердых тел охватывают интервал энергий до ~25 eV. Для теоретических расчетов зонной структуры используют методы квантовой теории (линейной комбинации атомных орбиталей, ортогонализированных плоских волн, псевдопотенциала и др.). Точность теоретических расчетов Eg обычно не превышает ~0.5 eV. Последняя, однако, может быть повышена путем использования в теоретических расчетах опорных экспериментальных точек. Сейчас для многих твердых тел достигнуто хорошее качественное понимание зонной картины в довольно большом интервале энергий, а в ряде случаев и полуколичественное знание зонных структур в интервале 10- 20 eV, где точность может достигать 0.5- 1.0 eV, то есть 5- 10%. В то же время, теоретические расчеты зонной структуры твердых тел все еще слишком грубы, чтобы однозначно интерпретировать, например, спектры электроотражения (экспериментальное разрешение спектральных пиков превышает ~0.01-0.001 eV) или предсказать величины зазоров между экстремумами валентной зоны и зоны проводимости, где требуется точность более ~0.1 eV. Поэтому для достоверного определения Eg используют экспериментальные методы исследований, точность которых достигает ~0.1 eV (иногда до ~0.01 eV).

Экспериментально величина Eg определяется из анализа различных физических эффектов, связанных с переходами электронов из зоны проводимости в валентную зону под действием термической активации (Egterm), либо квантов света (Egopt). Обычно Egterm определяют по температурному ходу электросопротивления или коэффициента Холла R в области собственной проводимости, а Egopt - из края полосы поглощения и длинноволновой границы фотопроводимости (Photo). Величину Eg можно оценить также из измерений магнитной восприимчивости, теплопроводности (биполярная компонента), опытов по туннелированию при низкой температуре и т.п. Существуют также некоторые эмпирические соотношения для качественной оценки ширины запрещенной зоны Eg материалов, например:

 

 

(здесь NX, M и AX, M - число и атомные номера валентных электронов аниона и катиона, С = 43 - постоянная), имеющие вспомогательный характер. Применяется также оценка Eg методом экстраполяции (обычно линейной или квадратичной) в гомологических рядах известных соединений, либо фаз переменного состава. Наиболее часто Eg определяют экспериментально по температурному ходу электросопротивления:

 

 

здесь e - заряд электрона, μ - подвижность электронов, в области собственной проводимости кристалла, когда концентрация носителей тока в зоне проводимости возрастает с температурой в результате термической активации по экспоненциальному закону:

 

 

здесь С- константа, зависящая от параметров зон проводимости и валентной, ko - постоянная Больцмана, T - абсолютная температура, Ea = (Eg/2) - энергия активации (коэффициент 1/2 показывает, что уровень Ферми должен быть расположен посередине запрещенной зоны). Метод требует учета температурной зависимости подвижности электронов μ.

Величину Eg определяют также путем измерения зависимости коэффициента Холла от температуры в области собственной проводимости по формуле:

 

 

где R- коэффициент Холла, T- абсолютная температура.

Основные ошибки определения Eg указанными методами связаны c: 1) недостижением области собственной проводимости, влиянием активации примесных уровней и вкладом примесной проводимости; 2) неучетом температурной зависимости подвижности μ в формуле (3); 3) недостаточной протяженностью использованного интервала температур ΔT; 4) изменением химического состава образцов и протяженности области гомогенности соединений при высокой температуре и другими факторами.

Определение Eg из края собственного поглощения света полупроводником и фотопроводимости основано на возбуждении валентного электрона в зону проводимости за счет поглощаемой энергии фотона. Возможны прямые (вертикальные) оптические переходы (k2 = k1 + g, или k2 ~ k1, здесь k1 и k2 - волновой вектор электрона в конечном и исходном состоянии, g - волновой вектор фонона) и непрямые (невертикальные) оптические переходы с участием фононов ((k2 ~ k1+ Kph, здесь Kph - импульс фонона). Край собственного поглощения определяется при прямых и непрямых переходах соответственно соотношениями:

 


здесь ω* - граничная частота поглощения фотонов, ωphonon - частота поглощаемого (+) и испускаемого (-) фонона, Egopt и Egterm - оптическая и термическая ширина запрещенной зоны. Из выражений (6) и (7) следует, что величина Egopt = Egterm для случая прямых вертикальных оптических переходов, в случае непрямых оптических переходов величина Egopt может быть как меньше (случай поглощения фонона), так и больше (случай испускания фонона) минимального расстояния между валентной зоной и зоной проводимости (Egterm = Eg), причем измеренные значения Egopt могут существенно зависеть от кристаллографического направления в образце. Обычно Egopt = Egterm в ковалентных кристаллах, Egopt > Egterm в ионных кристаллах, Egopt < Egterm в случае экситонного поглощения света (образования связанных электрона и дырки). Экситонная ширина запрещенной зоны рассчитывается из соотношения:

 

 

где ΔEX - энергия связи экситона (eV), в отдельных случаях измеренные значения Egopt и Egterm могут различаться в несколько раз. Указанные соотношения (6) и (7) верны для случая нахождения уровня Ферми в запрещенной зоне кристалла. В сильно легированных полупроводниках р-типа (полуметаллах) возбуждение электронов в зону проводимости происходит с уровня Ферми, расположенного в валентной зоне соединения, при этом величина Egopt дополнительно увеличится до Egopt ~ Egterm + EF.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-03-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: