а — впуск в кривошипную камеру, сжатие в цилиндре; б — воспламенение (до ВМТ) и последующее сгорание в цилиндре; в — выпуск отработавших газов из цилиндра и продувка горючей смесью из картера; г — схема лепесткового клапана; д — внешний вид лепесткового клапана; 1 — продувочный канал; 2 — выпускной канал; | 3 — свеча зажигания; 4 — лепестковый клапан во впускном канале; 5 — впускной канал; 6 — кривошипная камера; 7 — корпус лепесткового клапана; 8 — ограничитель; 9 — упругая пластина |
При движении поршня вверх от НМТ происходит впуск рабочей смеси в подпоршневом пространстве, а в надпоршневом — сначала вытеснение отработавших газов, оставшихся от предыдущего цикла, а позже, когда окна закрываются кромкой поршня — сжатие. Около ВМТ смесь в камере сгорания воспламеняется электрической искрой, образующейся между электродами свечи. Горящая топливно-воздушная смесь расширяется и толкает поршень вниз — происходит рабочий ход. Опустившись примерно на 2/3 своего хода, верхняя кромка поршня открывает окна в цилиндре. Отработавшие газы, находящиеся под избыточным дав-лением, выходят через выпускное окно в выпускную трубу. Через другие окна в цилиндр поступает свежий заряд из полости картера, где опускающийся поршень создает избыточное давление. Это перетекание смеси называется продувкой, а окна и каналы — продувочными.
Современные двухтактные ДВС имеют многоканальную (3–7 каналов) возвратно-петлевую продувку. Кроме того, на входе в цилиндр ставят обратный пластинчатый (лепестковый) клапан, которым управляет разрежение в картере. Во время впуска в картер (поршень движется от НМТ к ВМТ) под действием разрежения в подпоршневом пространстве пластинки клапана открывают проход горючей смеси от карбюратора. При обратном движении поршня (во время продувки) избыточное давление в картере закрывает пластины клапана, препятствуя обратному выбросу смеси из картера в карбюратор. Лепестковый клапан улучшает наполнение цилиндра, повышает мощность и экономичность двигателя, особенно на малых и средних частотах вращения коленчатого вала. Многие двигатели также имеют специальный механизм, изменяющий высоту выпускного окна (а значит продолжительность выпуска) в зависимости от частоты вращения коленчатого вала двигателя (так называемый «управляемый выпуск»). Несмотря на принимаемые меры по улучшению газообмена двухтактных ДВС, некоторая часть смеси уходит с отработавшими газами, что снижает их экономичность по сравнению с четырехтактными.
|
Рабочий процесс как двух-, так и четырехтактных ДВС происходит в цилиндре. Поршень перемещается по внутренней поверхности (зеркалу) цилиндра или вставной гильзы. В современных двигателях вместо стальных или чугунных гильз применяют твердосплавные никель-кремниевые композиции («никасил»), напыленные непосредственно на алюминиевую основу цилиндра. В зависимости от принятого типа системы охлаждения, рубашки цилиндра имеют ребра (воздушное охлаждение) или внутренние полости для прохода охлаждающей жидкости.
Поршень воспринимает давление газов при сгорании рабочей смеси. Он состоит из верхней и нижней частей (соответственно головки и юбки) и бобышек крепления поршневого пальца. Форма днища бывает плоской или выпуклой, у четырехтактных двигателей в днище часто делают выемки под клапаны. В юбке поршня у двухтактных двигателей выполнены вырезы, через которые проходит горючая смесь, ведь у этих двигателей поршень управляет газораспределением (впуском, продувкой и выпуском).