Получение, контроль и транспортировка шихты




 

Отвешивание и смешивание материалов. На стекольных заводах для отвешивания сырьевых материалов используют весы разнообразных конструкций. По принципу действия весы бывают стационарными, отвешивающими только один сырьевой материал; подвижными, отвешивающими все материалы поочередно (весы-тележка, весы на монорельсе); стационарными автоматическими и полуавтоматическими, отвешивающими все сырьевые материалы поочередно (весы снабжены бункером, в который подаются материалы из расходных бункеров); автоматическими, устанавливаемыми под каждым бункером.

В настоящее время на крупных заводах сырьевые материалы отвешивают на автоматических весах, причем весы, транспортные средства и смеситель связаны системой автоматики, обеспечивающей их синхронную работу. Взвешенные в соответствии с рецептом шихты сырьевые материалы перемешивают в смесителях. Контейнерные смесители исключают операцию выгрузки шихты. Их целесообразно применять при малом объеме производства и варке небольших количеств различных стекол (например, при варке окрашенных стекол в Горшковой печи, свинцового хрусталя и т.п.)

Для приготовления шихты при механизированном производстве применяют тарельчатые смесители. В смесителях типа СТ сырьевые материалы через приемную воронку загружают на вращающуюся чашу-тарелку. Перемешивание материалов осуществляется при одновременном вращении чаши-тарелки и установленных с эксцентриситетом по отношению к оси смесителя лопастей или катков, имеющих самостоятельный привод. На стекольных заводах цикл смешивания в тарельчатых смесителях автоматизирован.

 

Рис. 1. Схема технологической линии приготовления шихты с линейным расположением бункеров сырьевых материалов

1 — бункера сырьевых материалов;

2 — автоматические весы;

3 — сборочный конвейер;

4 — бункер рукавного переключателя;

5 — смеситель;

6 — шнек;

7 — вагонетка (кюбель, конвейер) для транспортировки шихты к стекловаренной печи;

8 — расходный бункер;

9 — элеватор.

 

В автоматизированных линиях приготовления шихты применяется линейная система расположения бункеров сырьевых материалов, под которыми расположены стационарные автоматические весы. Один из примеров такой линии приведен на рис. 1. Из расходных бункеров 1 сырьевые компоненты после взвешивания на автоматических весах 2, ссыпаются сборочным конвейером 3 в бункер рукавного переключателя 4, из которого попадают в один из смесителей 5, где они перемешиваются и увлажняются. Из смесителя шихта выгружается в бункер шнека 6 и транспортируется элеватором 9, который пересыпает ее в расходные бункера 8, откуда она транспортируется к механизированному загрузчику стекловаренной печи вагонетками 7 или транспортером.

Возможна башенная компоновка дозировочно-смесительного отделения, при которой материалы после каждого отвеса направляются непосредственно в смеситель, что позволяет избежать лишней транспортировки шихты и пыления. На рис. 2 приведена технологическая схема высокопроизводительного цеха приготовления шихты для четырех печей, в которых варят стекло разных цветов с использованием кондиционных сырьевых материалов.

 


Рис. 2. Технологическая схема приготовления шихты с использованием башенного расположения бункеров сырьевых материалов для четырех стекловаренных печей

1 – стекловаренные печи;

2 – конвейеры;

3 – питатели;

4 – бункера шихты;

5 – подъемники;

6 – блок бункеров сырьевых материалов;

7 – автоматические весы;

8 — сборный бункер;

9 — смесители;

10 – промежуточные бункера сырьевых материалов;

11 – дробилка;

12 – бункера для красителей.

 

На заводах, выпускающих небольшие партии бытовых изделий из различных стекол, для приготовления шихты целесообразно использовать контейнеры. Шихту с применением контейнеров можно приготовить на поточной линии (рис. 3).

В этом случае контейнеры последовательно проходят первый и второй весовые участки и участок ручного ввода малых добавок (красители, обесцвечиватели и т.п.). Далее контейнеры подаются на участок смешивания шихты, закрепляются в специальных устройствах, вращаются в течение определенного времени, после чего транспортируются к стекловаренной печи.

 

Рис. 3. Технологическая схема дозировочно-смесительного отделения с применением контейнеров

1 — контейнер;

2 — первый весовой участок;

3 — распределительный щит;

4 — второй весовой участок;

5 — участок ручного ввода малых добавок;

6 — участок подачи контейнера вилочным загрузчиком на участок смешивания;

7 — участок смешивания материалов в контейнерах;

8 — участок транспортировки контейнеров к стекловаренной печи;

9 — щит управления;

10 — бункера для сырьевых материалов;

11 — бункера для песка и стекольного боя.

Контроль качества шихты. Готовую шихту контролируют на соответствие заданному химическому составу, влажность, однородность. Допустимые отклонения от заданного состава компонентов в отдельных отвесах не должны превышать по песку, соде, поташу ± 1%, по карбонатам кальция и магния, сурику, глету, влаге ± 0,5%. При работе автоматизированных линий требования по отклонениям состава компонентов шихты ужесточаются, что вызывает необходимость применения кондиционных сырьевых материалов. Применение быстродействующих рентгеновских анализаторов для экспресс-анализа шихты и стекла в сочетании с компьютерной системой расчетов по составу шихты, позволяют создать систему управления качеством шихты. Все расчеты проводятся на основе вводимых в компьютер данных по химическому составу стекла и компонентов шихты, их количеству, влажности, точности дозирования. При этом коррекция рецепта шихты должна проводиться при изменении состава сырьевых материалов с учетом того, что допустимые колебания содержания оксидов в стекле не должны превышать 0,2-0,3%.

Транспортировка готовой шихты. Приготовленную шихту и стекольный бой подают к стекловаренным печам в контейнерах, кюбелях, бункерных вагонетках. При больших объемах подача шихты к стекловаренным печам осуществляется ленточными конвейерами. Возможна подача шихты пневматическим транспортом. При этом расстояние от места приготовления шихты до стекловаренной печи должно быть возможно более коротким. Поэтому для современных заводов, особенно стеклотарных, характерна единая компоновка дозировочно-смесительного отделения и машино-ванного цеха.

Разработаны способы приготовления однородной шихты в результате проведения реакций силикатообразования в растворах. Впервые однородная шихта, соответствующая определенному составу стекла, была получена способом осаждения и низкотемпературных химических реакций. На основе использования этого принципа разработаны новые способы уплотнения, которые особенно эффективны для мелкодисперсных гидротермальных шихт.

Гидротермальный способ приготовления шихты. Разработана технология гидротермального приготовления шихты с использованием горных пород, содержащих аморфный кремнезем. Сущностью технологии заключается в двукратной обработке измельченной породы слабыми щелочными растворами в автоклавах при температуре около 180 градусов. Свободный аморфный кремнезем породы на первой стадии обработки взаимодействует с гидроксидом натрия, образуя раствор трисиликата щелочного металла (жидкое стекло). Остаток породы подвергается вторичной щелочной обработке концентрированным раствором, что позволяет получить раствор метасиликата щелочного металла и осадок гидратированных алюмосиликатов. В раствор удается перевести около 80% SiO2 породы. Силикаты щелочных щелочноземельных металлов (основные компоненты шихты) отличаются довольно высокой степенью чистоты, так как красящие вещества при гидротермальной обработке остаются в осадке щелочных алюмосиликатов. Наиболее выгодна комплексная переработка горных пород, при которой можно получить шихту для различных видов стекол, например, свинцового хрусталя и тарного стекла. Оптимальный вариант получения шихты для свинцового хрусталя обеспечивается при использовании KOH и Pb(NO3)2 . однако эти материалы дефицитны, поэтому обычно применяют NaOH, PbO, Pb3O4 и поташ. горную породу подвергают гидротермальной обработке только NaOH. Удаление оксида натрия из натриевого стекла осуществляется путем декарбонизации,т.е. взаимодействия с углекислым газом при вводе оксида углерода, или NaHCO3, (NH4)2CO3.Схема гидротермального способа приготовления шихты свинцового хрусталя при комплексной переработке перлита:

 

Вид порока Причины возникновения порока на стадиях
Приготовление шихты Варка Осветление и гомогенизация охлаждение
Камни шихтные от огнеупоров Комкование шихты, плохое перемешивание шихты, крупнозернистые компоненты шихты и неоднородность ее гранулометрического состава, наличие посторонних нерастворимых включений Неправильная загрузка шихты в печь, недостаточная температура или продолжительность варки, быстрое продвижение непроварившихся частиц, разъедание огнеупоров стен варочного бассейна и свода печи Быстрое продвижение непроварившихс частиц, разъедание огнеупоров стен варочного бассейна и свода печи Поступление стекломассы с пороками из варочного бассейна, разъедание огнеупоров свода выработочной части печи
Продукты кристаллизации --- --- --- Применение стекла, склонного к кристаллизации, выдержка стекломассы при температурах, благоприятствующих кристаллизации, попадание пыли, осколков стекла и т.д.
свиль Неоднородность гранулометрического состава, комкование и плохое перемешивание шихты, рассоление при транспортировке Неправильная загрузка шихты в печь, недостаточная температура или продолжительность варки, большая вязкость стекломассы, выплавление компонентов шихты Недостаточное перемешивание стекломассы газами или резкое падение температуры, растворение огнеупоров Преждевременное падение и неравномерное респределение температуры, местное растворение огнеупоров, образование высоковязкой поверхностной пленки
пузыри Избыточное количество газообразных в шихте, недостаточное количество осветлителей. Неоднородность гранулометрического состава шихты Неправильная загрузка шихты в печь. Недостаточная температура, неблагоприятная атмосфера в печи, выделение газов из огнеупоров. Недостаточная температура, затянувшиеся реакции силикатообразования и протекание вторичных реакция. Высокая вязкость стекломассы. неблагоприятная атмосфера в печи Протекание вторичных реакций, неблагоприятная атмосфера в печи, сильное охлаждение стекломассы, образование газов из огнеупоров. попадание металлического железа.

Таблица-Основные пороки стекломассы

 


2. Варка стекла в печах периодического и непрерывного действия

Варка стекла производиться в печах различных конструкций с газовым или электрическим обогревом. По режиму работы различают периодические (горшковые) и непрерывные (ванные) печи. В некоторых случаях применяются периодические ванные печи.

Работа печей характеризуется производительностью, коэффициентом полезного действия и расходом тепла на варку стекла. Коэффициент полезного действия Горшковых печей 6 – 8 %, периодических ванных 10 – 15 %, непрерывных ванных 20 – 60 %, электрических 50 – 80 %.

Наиболее эффективны по доле полезно затрачиваемого тепла электрические печи. Однако их широкое применение в промышленности сдерживается относительно высокой стоимости электроэнергии по сравнению со стоимостью природного газа.

В современных условиях стекловаренная печь рассматривается как агрегат с рациональным использованием энергии. В современных печах необходимая для стекловарения энергия получается при сжигании природного газа, жидкого топлива и при использовании электроэнергии. Использование электроэнергии для стекловарения наиболее эффективно, но стоимость ее пока еще выше стоимости органических видов топлива. Поэтому использование электроэнергии в стекловаренных печах, должно быть экономически оправдано, т.е. должна быть увеличена производительность печи, сокращен расход материалов, улучшено качество продукции или уменьшено выделение вредных веществ. При использовании различных видов пламенных печей нужно сравнивать удельные расходы тепла на варку стекла. В пламенно-электрических печах сохраняется основное пламенное топливо, а ввод электроэнергии определяется экономическими соображениями. Электроды могут располагаться в зонах варки, осветления и гомогенизации и вводиться через дно или стены печи. Особенно эффективна установка электродов в высокопроизводительных проточных печах прямого нагрева и с подковообразным направлением пламени. Полностью электрические печи сравнительно небольшой производительностью применяются при варке стекол для изделий бытового и технического назначения. По напрвлению процесса варки электрические печи разделяют на два типа:

1.горизонтальные;

2.вертикальные.

В печах горизонтального типа стадии стекловарения осуществляются последовательно по длине печи, как в пламенных ванных печах традиционной конструкции.

В печах вертикального типа процесс стекловарения осуществляется по глубине печи. При этом шихта и бой загружаются сверху и варка происходит под слоем шихты. Температура над шихтой не превышает 300 градусов, что значительно снижает потери легколетучих компонентов (B2O3, PbO, Se, Na2O и др.). Вертикальные печи применяются для варки стекол с легколетучими или восстанавливающимися компонентами.

Преимущества электрической варки по сравнению с пламенной на примере варки свинцового хрусталя производительностью 6-8- т в сутки.

 

  Пламенная печь Электрическая печь
Площадь варочной части,м2   2,4
Тепловыделения варочной части печи, кВт    
Удельный съем стекломассы, т/м2 сутки 0,405 3,4
Удельный расход тепла на варку стекла, кДж/кг    
Коэффициент полезного действия, % 8,5  

 

Те хнология электрической варки постоянно совершенствуется. Ведутся разработки электрических стекловаренных печей с удельными съемами до 15 т/м2 сутки. В будущем при получении достаточно дешевой электроэнергии, электрические печи получат преимущественное развитие.


Стадии стекловарения

 

Процесс стекловарения протекает в сложной обстановке, создаваемой рядом химических и технологических факторов.

В реальных производственных условиях отдельные этапы процесса трудно выделить изолированно. Однако для ясного освоения процесса стекловарения в целом, знание элементов, из которых он слагается, необходимо и важно.

Процесс стекловарения проходит в пять стадий.

Первая стадия – силикатообразование – характеризуется тем, что к концу ее: а) в шихте не остается отдельных составляющих ее компонентов (нет отдельно песка, соды, сульфата, мела и т.д.); б) большинство газообразных составляющих шихты улетучивается; в) основные химические реакции в твердом состоянии между компонентами шихты закончены.

Вторая стадия – стеклообразование – характеризуется тем, что к ее концу масса становиться прозрачной, т.е. в ней отсутствуют непроваренные частицы шихты, однако она пронизана большим количеством пузырей и свилей, т.е. неоднородна. Для обычных стекол эта стадия завершается при 1150-1200 С.

Третья стадия – дегазация – характеризуется тем, что к ее концу стекломасса освобождается от видимых газовых включений, и тем, что устанавливается равновесное состояние между стекломассой и газами, остающимися в самой стекломассе.

Четвертая стадия – гомогенизация – характеризуется тем, что к ее концу стекломасса освобождается от свилей и становиться однородной. Колебания в показаниях преломления отдельных частей стекломассы минимальные. Так, в оптическом стекле эти колебания не превышают 0,0005.

Пятая стадия – студка – характеризуется тем, что температура стекломассы снижается на 200 – 300 С для создания необходимой рабочей вязкости. Каждая из перечисленных стадий процесса стекловарения имеет свои особенности и для проведения каждой из них существует свои оптимальные условия. Пути, по которым следует вести практическое стекловарение, должны быть основаны на теории стекловарения. Для этого чтобы теория полнее вскрыла все свои стороны вопроса, необходимо детально:

1.явления химического, физического и физико-химического порядка, происходящие в процессе стеклообразования, т.е.:

а) химические реакции, протекающие при нагревании в отдельных стеклообразующих компонентах и их смеси;

б) термофизику процессов

в)физико-химические взаимодействия в стекломассе, а так же между стекломассой и атмосферой печи и между стекломассой и огнеупорами.

2.влияние различных факторов, ускоряющие процесс стеклообразования на отдельных его этапах и в целом.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-12-28 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: