Задача №4 «Назначение на работы»




 

Четверо рабочих выполнять четыре вида работ. Стоимости выполнения i-м рабочим j-работы приведены в табл. 2.8

 

Таблица 2.8 – Стоимость выполнения работ

  Работа 1 Работа 2 Работа 3 Работа 4
Рабочий 1        
Рабочий 2        
Рабочий 3        
Рабочий 4        

 

В этой таблице строки соответствуют рабочим, а столбцы — работам. Необходимо составить план выполнения работ так, чтобы все работы были выполнены, каждый рабочий был загружен только на одной работе, а суммарная стоимость выполнения всех работ была минимальной. Отметим, что данная задача является сбалансированной, т. е. число работ совпадает с числом рабочих. Если задача не сбалансирована, то перед началом решения ее необходимо сбалансировать, введя недостающее число фиктивных строчек или столбцов с достаточно большими штрафными стоимостями работ.

Пусть переменная xij= 1, если i-м рабочим выполняется j-я работа, и хij= 0, если i-м рабочим не выполняется j-я работа. Тогда модель имеет следующий вид:

минимизировать:

Z=SScij*xij (2.27)

при ограничениях:

Sxij=1, j=[1,4] (2.28)

S xij=1, I=[1,4] (2.29)

xij=[0,1], I=[1,4], j=[1,4]. (2.30)

Ввод данных

 

Формулы

 

 

Поиск решения

 

Минимальная сумма за работы составляет 13 грн.

Задача №2 «Планирование портфеля заказов»

 

Для получения сплавов А и В используются четыре металла I, II, III и IV, требования к содержанию которых в сплавах А и В приведены в табл. 2.3.

 

Таблица 2.3 - Требования к содержанию металлов в состава сплавов

Сплав Требования к содержанию металла
А Не более 80% металла I
  Не более 30% металла II
В От 40 до 60% металла II
  Не менее 30% металла III
  Не более 70% металла IV

 

Характеристики и запасы руд, используемых для производства металлов I, II, III и IV, указаны в табл. 2.4.

 

Таб. 2.4

Характеристики и запасы руд в задаче об определении состава сплавов

Руда Максимальный запас, т Состав, % Цена, S/т
    III IV Другие компоненты
               
               
               

 

Цена 1 т. сплава А равна 200 долларов, а 1 т. сплава В — 210 долларов. Необходимо максимизировать прибыль от продажи сплавов А и В.

Обозначим через х1а, х2а, х3а, х4а и х1в, х2в, х3в, х4в количество I, II, III и IV металлов, используемых для получения сплавов А и В, соответственно. Количество использованной i-я руды обозначим уi I=[1, З].

Тогда математическая модель данной задачи имеет вид:

максимизировать:

Z = 200(х1а+х2а+х3а+х4а) + 210(х1в+х2в+х3в+х4в) –30у1 – 40у2 –

– 50у3 (2.7)

при ограничениях на состав сплавов (на основании данных из табл.):

х1а <=0,8(х1а+х2а+х3а+х4а) (2.8)

х2а <= 0,3 (х1а+х2а+х3а+х4а) (2.9)

х2в <= 0,6(х1в+х2в+х3в+х4в) (2.10)

х2в>=0,4(х1в+х2в+х3в+х4в) (2.11)

х3в>=0,3(х1в+х2в+х3в+х4в) (2.12)

x4 в <=0,7(х1в+х2в+х3в+х4в) (2.13)

на характеристики и состав руды (на основании данных из табл. 1.4):

x1a+x1 в <=0,01y1+0,02y2+0,03y3 (2.14)

x2a+x2 в <=0,03y1+0,04y2+0,04y3 (2.15)

x3a+x3 в <=0,06y1+0,06y2+0,03y3 (2.16)

x4a+x4 в <=0,06y1+0,03y2+0,09y3 (2.17)

а также на диапазоны использования переменных:

xia>=0, xiв >=0, I=[1,4] (2.18)

0<=y1<=1000 (2.19)

0<=y2<=2000 (2.20)

0<=y3<=3000 (2.21)


Ввод данных

 

 

Формулы

 

 

Поиск решения

 


Сплавы А и В не выгодно производить так, как получаются убытки.


ЛИТЕРАТУРА

 

1. И.Я. Лукасевич, Анализ финансовых операций, Москва: Юнити, 1998. - 400 с.

2. Уотшем Т. Дж., Паррамоу К. Количественные методы в финансах. М.: Финансы: Издат. об-ние "ЮНИТИ", 1999. 527 с.

3. Джеффри Х.Мур, Лари Р. Уэдерфорд Экономическое моделирование в Microsoft Еxcel, 6-е изд.: Пер. с англ. – М.: Издательский дом «Вильямс», 2004. – 1024 с.

4. И.И. Бажин Информационные системы менеджмента. – М.: ГУ-ВШЭ, 2000. –688с.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-10-17 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: