Министерство общего и профессионального образования




Российской Федерации

 

ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ УПРАВЛЕНИЯ

 

 

ИНСТИТУТ ЗАОЧНОГО ОБУЧЕНИЯ

 

Контрольная работа

по дисциплине «Прикладная математика»

 

 

Специальность Бухгалтерский учет и аудит

Курс 2

Группа БуиА-6-99/2

Студент

Студенческий билет №

ВАРИАНТ № 25

Адрес    
   
   
   

«» мая 2001г.

 

 

Проверил:

____________________/ /

«___»_______________2001г.

 

Москва 2001г.


Задача №1. Линейная производственная задача.

Предприятие может выпускать четыре вида продукции, используя для этого три вида ресурсов. Известны технологическая матрица А затрат любого ресурса на единицу каждой продукции, вектор В объемов ресурсов и вектор С удельной прибыли

4 0 8 7 316

А= 3 2 5 1 В= 216 С=(31, 10, 41, 29)

5 6 3 2 199

 

Найти производственную программу (х1, х2, х3, х4), максимизирующую прибыль

z=31х1+10х2+41х3+29х4

 

Затраты ресурсов 1-го вида на производственную программу

1+0х2+8х3+7х4≤316

Затраты ресурсов 2-го вида на производственную программу

1+2х2+5х34≤216

Затраты ресурсов 3-го вида на производственную программу

1+6х2+3х3+2х4≤199

Имеем

1+0х2+8х3+7х4≤316

1+2х2+5х34≤216 (1)

1+6х2+3х3+2х4≤199

где по смыслу задачи

х1≥0, х2≥0, х3≥0, х4≥0. (2)

Получена задача на нахождение условного экстремума. Для ее решения систему неравенств (1) при помощи дополнительных неизвестных х5, х6, х7 заменим системой линейных алгебраических уравнений

1+0х2+8х3+7х45=316 (I)

1+2х2+5х3+ х46=216 (II) (3)

1+6х2+3х3+2х47=199 (III)

где дополнительные переменные имеют смысл остатков соответствующих ресурсов, а именно

х5 – остаток сырья 1-го вида,

х6 – остаток сырья 2-го вида,

х7 – остаток сырья 3-го вида.

Среди всех решений системы уравнений (3), удовлетворяющих условию неотрицательности

х1≥0, х2≥0, х3≥0, х4≥0, х5≥0, х6≥0, х7≥0 (4)

надо найти то решение, при котором функция

z=31х1+10х2+41х3+29х4

будет иметь наибольшее значение

 

Организуем направленный перебор базисных решений при помощи симплекс метода.

Из функции z(x) видно, что наиболее выгодно начать производство с 3-го ресурса.

Найдем ведущее уравнение:

bi 316 216 199 316

min ------- = ----- ----- ----- = -----

ai3>0 8 5 3 8

 

Примем I-е уравнение за ведущее. Решаем симплекс методом:

С Базис Н               Поясне-ния
х1 х2 х3 х4 х5 х6 х7
  х5                  
  х6                
  х7                
z0-z 0-z -31 -10 -41 -29      
  х3 39,5 1/2     7/8 1/8      
0 х6 18,5 1/2     -27/8 -5/8    
  х7 80,5 7/2     -5/8 -3/8    
z0-z 1619,5 -21/2 -10   55/8 41/8    
  х3     -6/7   54/56 10/56   -1/7 Все ∆j≥0
  х6     8/7   -23/7 -4/7   -1/7
  х1     12/7   -10/56 -6/56   2/7
z0-z                

 

Оптимальная производственная программа:

х1=23, х2=0, х3=28, х4=0

Остатки ресурсов:

Первого вида – х5=0;

Второго вида – х6=7;

Третьего вида – х7=0

Максимальная прибыль zmax=1861

Обращенный базис Q-1

10/56 0 -1/7

Q-1= -4/7 1 -1/7

-6/56 0 2/7

х5 х6 х7

Базис Q

8 0 4

Q= 5 1 3

3 0 5

х3 х6 х1

 

Самопроверка.

10/56•8+0•5-1/7•3 10/56•0+0•1-1/7•0 10/56•4+0•3-1/7•5 1 0 0

Q-1 •Q= -4/7•8+1•5-1/7•3 -4/7•0+1•1-1/7•0 -4/7•4+1•3-1/7•5 = 0 1 0

-6/56•8+0•5+2/7•3 -6/56•0+0•1+2/7•0 -6/56•4+0•3+2/7•5 0 0 1

       
   


10/56•316+0•216-1/7•199 28

Q-1 •B= -4/7•316+1•216-1/7•199 = 7

-6/56•316+0•216+2/7•199 23


Задача №2. Двойственная задача.

Предприниматель Петров, занимающийся производством других видов продукции, но с использованием 3-х таких же видов ресурсов, какие имеются у нас, предлагает нам продать ему по определенным ценам все имеющиеся у нас ресурсы и обещает заплатить у1 за каждую единицу 1-го ресурса

у2 за каждую единицу 2-го ресурса

у3 за каждую единицу 3-го ресурса.

В нашей задаче технологическая матрица А, вектор объемов ресурсов В и вектор удельной прибыли С имеют вид

4 0 8 7 316

А= 3 2 5 1 В= 216 С=(31, 10, 41, 29)

5 6 3 2 199

 

для производства единицы продукции 1-го вида мы должны затратить, как видно из матрицы А 4 единицы ресурса 1-го вида, 3 единицы ресурса 2-го вида, 5 единиц ресурса 3-го вида.

В ценах у1, у2, у3 наши затраты составят

1+3у2+5у3≥31

Аналогично, во 2-м столбце матрицы А указаны затраты различных ресурсов на производство единицы продукции 2-го вида

2+6у3≥10

Аналогично, в 3-м столбце матрицы А указаны затраты различных ресурсов на производство единицы продукции 3-го вида

1+5у2+3у3≥41

Аналогично, в 4-м столбце матрицы А указаны затраты различных ресурсов на производство единицы продукции 4-го вида

12+2у3≥29

Учтем, что за все имеющиеся у нас ресурсы нам должны заплатить

316у1+216у2+199у3

Таким образом, проблема определения расчетных оценок ресурсов приводит к задаче линейного программирования: найти вектор двойственных оценок

У=(у1, у2, у3)

Минимизирующий общую оценку всех ресурсов

f=316у1+216у2+199у3

при условии, что по каждому виду продукции суммарная оценка всех ресурсов, затрачиваемых на производство единицы продукции, не меньше прибыли, получаемой от реализации единицы этой продукции:

1+3у2+5у3≥31

2+6у3≥10

1+5у2+3у3≥41

12+2у3≥29

 

При этом оценки ресурсов не могут быть отрицательными

у1≥0, у2≥0, у3≥0

На основании 2-й основной теоремы двойственности

Х=(х1, х2, х3, х4) и у=(у1, у2, у3)

Необходимо и достаточно выполнения условий

х1(4у1+3у2+5у3-31)=0

х2(2у2+6у3-10)=0

х3(8у1+5у2+3у3-41)=0

х4(7у12+2у3-29)=0

Учитывая, что в решении исходной задачи х1>0, x3>0

Поэтому

1+3у2+5у3-31=0

1+5у2+3у3-41=0

Учтем, что 2-й ресурс был избыточным и, согласно теореме двойственности, его двойственная оценка равна нулю у2=0

Имеем систему уравнений

1+3у2+5у3-31=0

1+5у2+3у3-41=0

Решим систему:

1+5у3=31

у1=(31-5у3)/4

8((31-5у3)/4)+3у3=41

-7у3=-21

у1=(31-15)/4

 

откуда следует

у1=4, у3=3

Таким образом, получили двойственные оценки ресурсов

у1=4, у2=0, у3=3

 

Общая оценка всех ресурсов

f=316у1+216у2+199у3

f=1264+0+597=1861

 


Задача №2.1. Задача о «расшивке узких мест производства».

При выполнении оптимальной производственной программы 1-й и 3-й ресурсы используются полностью, образуя «узкие места производства». Их необходимо заказать дополнительно.

Пусть Т=(t1, 0, t3) – вектор дополнительных объемов ресурсов.

Так как мы предполагаем использовать найденные двойственные оценки ресурсов, то должно выполняться условие

Н+ Q-1Т≥0

Необходимо найти вектор

Т=(t1, 0, t3)

максимизирующий суммарный прирост прибыли

w=4t1+3t3

28 10/56 0 -1/7 t1 0

7 + -4/7 1 -1/7 · 0 ≥ 0

23 -6/56 0 2/7 t3 0

 

Предполагаем, что дополнительно можно получить не более 1/3 первоначального объема ресурса каждого вида

t1 316

0 ≤ 1/3 216

t3 199

 

где t1≥0, t3≥0

10/56t1-1/7t3≥-28

-4/7t1-1/7t3≥-7

-6/56t1+2/7t3≥-23

 
 


-10/56t1+1/7t3≤28

4/7t1+1/7t3≤7

6/56t1-2/7t3≤23

 

t1≤316/3, t3≤199/3

t1≥0, t3≥0

 

 

  t1 t3
I -156,8  
I    
II 12,25  
II    
III 214,66  
III   -80,5
IV 105,33  
V   66,33

 

Программа расшивки имеет вид

t1=0, t2=0, t3=49

и прирост прибыли составляет

w=4t1+3t3=3∙49=147

Сводка результатов приведена в таблице:

Сj         b x4+i yi ti
  aij                
               
               
xj                
j                

 


Задача №3. Транспортная задача линейного программирования.

Исходные данные:

31 40 41 49

45 4 5 8 6

60 3 2 5 1

65 5 6 3 2

 

Общий объем производства ∑аi=45+60+65=170 единиц продукции.

Потребителям требуется ∑bi=31+40+41+49=161 единиц продукции.

Так как продукции производится больше на 9 единиц, чем требуется потребителям, то мы имеем открытую модель транспортной задачи. Для превращения ее в закрытую вводим фиктивный пункт потребления с объемом 9 единиц. Для нахождения первого базисного допустимого решения используем правило «северо-западного угла».

  b1=31 b2=40 b3=41 b4=49 b5=9  
a1=45         * p1=0
a2=60           p2=-3
a3=65           p3=-5
  q1=4 q2=5 q3=8 q4=7 q5=5  

 

Θ=9 z(x1)=31·4+14·5+26·2+34·5+7·3+49·2+9·0=535

  b1=31 b2=40 b3=41 b4=49 b5=9  
a1=45           p1=0
a2=60       *   p2=-3
a3=65           p3=-5
  q1=4 q2=5 q3=8 q4=7 q5=5  

 

Θ=25 z(x2)=31·4+5·5+35·2+25·5+16·3+49·2+9·0=490

  b1=31 b2=40 b3=41 b4=49 b5=9  
a1=45           p1=0
a2=60           p2=-3
a3=65           p3=-2
  q1=4 q2=5 q3=5 q4=4 q5=  

z(x3)=31·4+5·5+35·2+25·1+41·3+24·2+9·0=415

Задача №4. Динамическое программирование. Распределение капитальных вложений.

Исходные данные:

xj                
f1(xj)                
f2(xj)                
f3(xj)                
f4(xj)                

 

Для решения используем метод «северо-восточной диагонали».

  -x2                
x2                  
                   
                   
                   
                   
                   
                   
                   
                   

 

                 
F2()                
x2()                

 

  -x3                
x3                  
                   
                   
                   
                   
                   
                   
                   
                   

 

                 
F3()                
x3()                

 

 

  -x4                
x4                  
                   
                   
                   
                   
                   
                   
                   
                   

 

x4*=x4(700)=0

x3*=x3(700-x4*)=x3(700)=200

x2*=x2(700-x4*-x3*)=x2(700-200)=x2(500)=300

x1*=700-x4*-x3*-x2*=700-0-200-300=200

x1=200

x2=300

x3=200

x4=0

 


Задача №5. Задача формирования оптимального портфеля ценных бумаг.

Исходные данные:

m0 m1 m2 s1 s2
         

 

Требуется сформировать оптимальный портфель заданной эффективности из 3-х видов ценных бумаг: безрисковых эффективности 2 и некоррелированных рисковых ожидаемой эффективности 4 и 6 и рисками 7 и 8. Необходимо узнать, как устроена рисковая часть оптимального портфеля и при какой ожидаемой эффективности портфеля возникает необходимость в операции short sale и с какими ценными бумагами?

4 49 0

m0=2, М=, V=

6 0 64

 

Зададимся эффективностью портфеля mp

Найдем обратную матрицу к V

1/49 0

V-1=

0 1/64

далее

4 1

M = I =

6 1

                   
   
         
 


1/49 0 4 2 1/49 0 2 2/49

V-1(M-m0I)= · - = · =

0 1/64 6 2 0 1/64 4 1/16

 

2/49

(M-m0I)T V-1(M-m0I)=(2 4) · = 65/196

1/16

Рисковые доли:

x1*=(mp-2) 8/65=(mp-2) 0,12

x2*=(mp-2) 49/260=(mp-2) 0,19

 

Безрисковая доля:

x0*=1-(mp-2) 0,31

Найдем значение mp, при котором возникает необходимость в проведении операции short sale:

(mp-2) 0,31=1

mp-2=1/0,31

mp=3,21+2

mp=5,21

Следовательно, если mp>5,21 то x0*<0 и необходимо провести операцию short sale.


Задача №6. Провести анализ доходности и риска финансовых операций.

Даны четыре операции Q1, Q2, Q3, Q4. Найти средние ожидаемые доходы Qi и риски ri операций. Нанести точки (Qi, ri) на плоскость, найти операции, оптимальные по Парето. С помощью взвешивающей формулы найти лучшую и худшую операции.

 

(0, 1/5), (2, 2/5), (10, 1/5), (28, 1/5)

(-6, 1/5), (-5, 2/5), (-1, 1/5), (8, 1/5)

(0, 1/2), (16, 1/8), (32, 1/8), (40, 1/4)

(-6, 1/2), (2, 1/8), (10, 1/8), (14, 1/4)

 

Q1        
1/5 2/5 1/5 1/5
         
Q2 -6 -5 -1  
1/5 2/5 1/5 1/5
         
Q3        
1/2 1/8 1/8 1/4
         
Q4 -6      
1/2 1/8 1/8 ¼

 

Q1=8,4 r1=10,4

Q2=-1,8 r2=4,7

Q3=16 r3=17,4

Q4=2 r4=8,7

 

j(Q1)=2 Q1-r1=6,4

j(Q2)=2 Q2-r2=-8,3

j(Q3)=2 Q3-r3=14,6

j(Q4)=2 Q4-r4=-4,7

Лучшей операцией является операция №3, худшей операцией является операция №2.

Оптимальной точки нет, так как нет ни одной точки, не доминируемой никакой другой.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-12-29 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: