Коэффициент полезного действия трансформатора




Коэффициентом полезного действия (к. п. д.) или отдачей трансформатора называется отношение полезной мощности трансформатора Р 2 к мощности, потребляемой им из сети источника электрической энергии Р 1 т. е.

Потребляемая мощность Р 1 всегда больше полезной Р 2, так как при работе трансформатора происходит потеря преобразуемой им энергии. Потери в трансформаторе складываются из потерь в стали магнитопровода Р ст и потерь в обмотках Р об.
Таким образом, потребляемую трансформатором мощность можно определить следующим выражением:

Р 1 = Р 2 + Р ст + Р об. (109)

Полезная мощность однофазного трансформатора

Р 2 = U 2 I 2 cos φ2, (110)

а трехфазного

Следовательно, к. п. д. для однофазного трансформатора

и для трехфазного трансформатора

Наибольший к. п. д. трансформатора будет при нагрузке, для которой потери в стали равны потерям в обмотках. У современных трансформаторов к. п. д. очень высок и достигает при полной нагрузке 95 — 99,5%. На практике к. п. д. трансформатора определяется по приведенной выше формуле для любой нагрузки Р 2.
Задаются полезной мощностью Р 2, например, 0; 25; 50; 75; 100; 125% от номинальной мощности и для каждой из выбранных мощностей определяют потери в трансформаторе.
Потери в стали магнитопровода Р ст зависят от марки стали, из которой выполнен сердечник, от частоты переменного тока и магнитной индукции в сердечнике. Так как частота тока сети и магнитная индукция не изменяются при работе трансформатора, то и потери в стали не зависят от нагрузки и остаются постоянными.
Потери в обмотках расходуются на нагревание проводников в этих обмотках протекающими по ним токами и пропорциональны току в квадрате. Таким образом, при нагрузке 0,5 от номинальной токи в обмотках будут вдвое, а потери в обмотках в четыре раза меньшими, чем при номинальной нагрузке.

9.

 

10. Выпрями́тель (электрического тока) — преобразователь электрической энергии; механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования входного электрического тока переменного направления в ток постоянного направления[1] (то есть однонаправленный ток), в частном случае — в постоянный выходной электрический ток[2].

Большинство выпрямителей создаёт не постоянный, а пульсирующий ток, для сглаживания пульсаций применяют фильтры.

Устройство, выполняющее обратную функцию — преобразование постоянного тока в переменный ток называется инвертором.

Из-за принципа обратимости электрических машин выпрямитель и инвертор являются двумя разновидностями одной и той же электрической машины (справедливо только для инвертора на базе электрической машины).

Двухполупериодный выпрямитель[править | править код]

Может строиться по мостовой или полумостовой схеме (когда, например, в случае выпрямления однофазного тока, используется специальный трансформатор с выводом от средней точки вторичной обмотки и вдвое меньшим количеством выпрямляющих ток элементов; такая схема ныне применяется редко, так как более металлоёмка и имеет большее эквивалентное активное внутреннее сопротивление, то есть большие потери на нагрев обмоток трансформатора).

Двухполупериодный выпрямитель с сглаживающим ёмкостным фильтром

При построении двухполупериодного выпрямителя со сглаживающим конденсатором следует всегда помнить, что переменное напряжение всегда измеряется в «действующем» значении, которое в 1,41 раза меньше его максимальной амплитуды, а выпрямленное напряжение на конденсаторе, в отсутствие нагрузки, будет всегда равно амплитудному. Это означает, что, например, при измеренном напряжении однофазного переменного тока 12 вольт до мостового однофазного выпрямителя со сглаживающим конденсатором, на конденсаторе, (в отсутствие нагрузки), будет напряжение до 17 вольт. Под нагрузкой выпрямленное напряжение будет ниже, (но не ниже величины средневыпрямленного[ уточнить ] напряжения переменного тока, если внутреннее сопротивление трансформатора — источника переменного тока — принять равным нулю) и зависеть от ёмкости сглаживающего конденсатора.

Соответственно, выбор величины переменного напряжения вторичной обмотки трансформатора, должен строиться исходя из максимальной допустимой величины подаваемого напряжения, а ёмкость сглаживающего конденсатора — должна быть достаточно большой, чтобы напряжение под нагрузкой не снизилось меньше минимально допустимого. На практике также учитывается неизбежное падение напряжения под нагрузкой — на сопротивлении проводов, обмотке трансформатора, диодах выпрямительного моста, а также возможное отклонение от номинального величины питающего трансформатор напряжения электрической сети.

Входное переменное напряжение (жёлтого цвета) и постоянное выходное напряжение однополупериодного выпрямителя с фильтрующей ёмкостью.

Следует отметить, что в выпрямителях с сглаживающим конденсатором диоды открываются не на весь полупериод напряжения, а на короткие промежутки времени, когда мгновенное значение переменного напряжения U (t) = U m s i n (ω t) {\displaystyle U(t)=U_{m}sin(\omega t)} превышает постоянное напряжение на фильтрующем конденсаторе (т. е. в моменты вблизи максимумов синусоиды). Поэтому протекающий через диоды (и обмотку трансформатора) ток представляет собой короткие мощные импульсы сложной формы, амплитуда которых значительно превышает средний ток, потребляемый нагрузкой выпрямителя. Этот факт следует учитывать при расчёте трасформатора (вариант расчёта для работы не на активную нагрузку, а на выпрямитель с ёмкостным фильтром), и принимать меры для подавления возникающих импульсных помех

 

 

11. Электрические машины служат для преобразования механической энергии в электрическую (генераторы) либо электрической в механическую (двигатели). Машины переменного тока делятся на асинхронные и синхронные. Такое деление связано с характером вращения магнитного потока и ротора в двигателях переменного тока. Так, в асинхронном двигателе скорость вращения ротора несколько меньше скорости вращения магнитного поля, создаваемого обмоткой статора. Увеличение нагрузки двигателя вызывает уменьшение скорости вращения ротора. В синхронном же двигателе скорость вращения ротора равна скорости вращения магнитного поля статора и не зависит от нагрузки двигателя. Подобное различие можно усмотреть и в работе асинхронного и синхронного генераторов.

Асинхронные машины используют главным образом как двигатели, а синхронные — как двигатели и генераторы. Практически все генераторы переменного тока синхронные.

Двигатель переменного тока имеет статор с сетевой обмоткой, создающей вращающий момент, и ротор с обмоткой, создающей противодействующий момент. Статор и ротор, выполненные из листовой электротехнической стали, входят в общую магнитную цепь двигателя.

В синхронных генераторах ротор под действием первичного двигателя при своем вращении создает вращающий магнитный поток, наводящий в обмотке статора ЭДС. Таким образом, обмотка ротора создает полюсную систему — индуктор, а обмотка статора генератора является якорем. Все электрические машины переменного тока имеют механическую часть, куда входят: корпус машины (станина), вал ротора, подшипники, в которых вращается вал, и вентиляционное устройство для охлаждения машины.

Конструктивные особенности различных машин переменного тока более подробно рассмотрены ниже.

12.

Типы асинхронных двигателей, разновидности, какие бывают двигатели

 

  Электродвигатели переменного тока, использующие для своей работы вращающееся магнитное поле статора, являются в настоящее время весьма распространенными электрическими машинами. Те из них, у которых частота вращения ротора отличается от частоты вращения магнитного поля статора, называются асинхронными двигателями.   В связи с большими мощностями энергетических систем и большой протяженностью электрических сетей энергоснабжение потребителей всегда осуществляется на переменном токе. Поэтому естественно стремление к максимальному использованию электрических двигателей переменного тока. Это, казалось бы, освобождает от необходимости многократного преобразования энергии. К сожалению, двигатели переменного тока по своим свойствам, и прежде всего по управляемости, существенно уступают двигателям постоянного тока, поэтому они используются преимущественно в установках, где не требуется регулирование скорости. Относительно недавно начали активно использоваться регулируемые системы переменного тока с подключением электродвигателей переменного тока через частотные преобразователи. Очень широко применяются в различных отраслях хозяйства и производства асинхронные двигатели в силу простоты их изготовления и высокой надежности. Между тем, можно выделить четыре основных типа асинхронных двигателей: · однофазный асинхронный двигатель с короткозамкнутым ротором; · двухфазный асинхронный двигатель с короткозамкнутым ротором; · трехфазный асинхронный двигатель с короткозамкнутым ротором; · трехфазный асинхронный двигатель с фазным ротором.   Однофазный асинхронный двигатель содержит на статоре лишь одну рабочую обмотку, на которую в процессе работы двигателя подается переменный ток. Но для пуска двигателя на его статоре есть и дополнительная обмотка, которая кратковременно подключается к сети через конденсатор или индуктивность, либо замыкается накоротко. Это необходимо для создания начального сдвига фаз, чтобы ротор начал вращаться, иначе пульсирующее магнитное поле статора не столкнуло бы ротор с места. Ротор такого двигателя, как и любого другого асинхронного двигателя с короткозамкнутым ротором, представляет собой цилиндрический сердечник с залитыми алюминием пазами, с одновременно отлитыми вентиляционными лопастями. Такой ротор, типа «беличья клетка» и называется короткозамкнутым ротором. Однофазные двигатели применяются в маломощных приборах, таких как комнатные вентиляторы или небольшие насосы.   Двухфазные асинхронные двигатели наиболее эффективны при работе от однофазной сети переменного тока. Они содержат на статоре две рабочие обмотки, расположенные перпендикулярно, причем одна из обмоток подключается к сети переменного тока напрямую, а вторая – через фазосдвигающий конденсатор, так получается вращающееся магнитное поле, а без конденсатора ротор бы сам не сдвинулся с места. Эти двигатели также имеют короткозамкнутый ротор, а их применение гораздо шире, чем у однофазных. Здесь уже и стиральные машины, и различные станки. Двухфазные двигатели для питания от однофазных сетей называют конденсаторными двигателями, так как фазосдвигающий конденсатор является зачастую неотъемлемой их частью.   Трехфазный асинхронный двигатель содержит на статоре три рабочие обмотки, сдвинутые относительно друг друга так, что при включении в трехфазную сеть, их магнитные поля получаются смещенными в пространстве относительно друг друга на 120 градусов. При подключении трехфазного двигателя к трехфазной сети переменного тока, возникает вращающееся магнитное поле, приводящее в движение короткозамкнутый ротор. Обмотки статора трехфазного двигателя можно соединить по схеме «звезда» или «треугольник», причем для питания двигателя по схеме «звезда» требуется напряжение выше, чем для схемы «треугольник», и на двигателе, поэтому, указываются два напряжения, например: 127/220 или 220/380. Трехфазные двигатели незаменимы для приведения в действие различных станков, лебедок, циркулярных пил, подъемных кранов, и т.д.   Трехфазный асинхронный двигатель с фазным ротором имеет статор аналогичный описанным выше типам двигателей, - шихтованный магнитопровод с тремя уложенными в его пазы обмотками, однако в фазный ротор не залиты алюминиевые стержни, а уложена уже полноценная трехфазная обмотка, в соединении «звезда». Концы звезды обмотки фазного ротора выведены на три контактных кольца, насаженных на вал ротора, и электрически изолированных от него. 1 - кожух с жалюзями, 2 - щетки, 3 - щеточная траверса со щеткодержателями, 4 - палец крепления щеточных траверс, 5 - выводы от щеток, 6 - колодка, 7 - изоляционная втулка, 8 - контактные кольца, 9 - наружная крышка подшипника, 10 - шпилька крепления коробки и крышек подшипника, 11 - задний подшипниковый щит, 12 - обмотка ротора, 13 - обмоткодержатель, 14 - сердечник ротора, 15 - обмотка ротора, 16 - передний подшипниковый щит, 7 - наружная крышка подшипника, 18 - вентиляционные отверстия, 19 - станина, 20 - сердечник статора, 21 - шпильки внутренней крышки подшипника, 22 - бандаж, 23 - внутренняя крышка подшипника, 21 - подшипник, 25 - вал, 26 - контактные кольца, 27 - выводы обмотки ротора Посредством щеток, на кольца также подается трехфазное переменное напряжение, и подключение может быть осуществлено как напрямую, так и через реостаты. Безусловно, двигатели с фазным ротором стоят дороже, но их пусковой момент под нагрузкой значительно выше, чем у типов двигателей с короткозамкнутым ротором. Именно в силу повышенной мощности и большого пускового момента, этот тип двигателей нашел применение в приводах лифтов и подъемных кранов, то есть там, где устройство запускается под нагрузкой, а не вхолостую

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: