Ответ
Генерирование и распределение электрической энергии на современных судах, как правило, осуществляется на переменном токе. Даже в тех случаях, когда значительную часть судовой электрической нагрузки составляют потребители постоянного тока, их питание обеспечивается преобразователями переменного тока в постоянный. Поэтому, основным типом современных судовых источников электрической энергии являются источники переменного тока.
На судах отечественного морского флота используется несколько серий судовых синхронных генераторов с мощностями в диапазоне от десятков киловатт до единиц мегаватт: МСК, МСС, ГСС, ГМС, ТМВ и др., которые выполняются на напряжение 230 или 400 В с частотой 50 Гц. Номинальные частоты вращения генераторов могут быть 500, 750, 1000, 1500 и 3000 об/мин. Общий вид судового синхронного генератора показан на рис. 3.
![]() |
Рисунок 3 — Общий вид судового синхронного генератора |
На судах широкое применение получили трехфазные синхронные генераторы (СГ), чаще всего с самовозбуждением или независимым возбуждением (при небольшой мощности синхронного генератора). Во втором случае в качестве возбудителя чаще всего применяются генераторы постоянного тока, соединенные по валу с генерирующим агрегатом, с помощью эластичной муфты. Наибольшее применение получили СГ следующих серий: МС, МСК, МСС, ГМС, ОС, СБГ.
Судовые синхронные генераторы принципиально не отличаются от генераторов, устанавливаемых на береговых электростанциях (рис. 4,а). Приводной двигатель ПД вращает ротор генератора, на котором расположена обмотка возбуждения ОВ. Во вращающуюся обмотку возбуждения через подвижные контакты, образованные щетками и контактными кольцами, поступает постоянный ток — ток возбуждения . Этот ток, проходя по обмотке возбуждения, создает основной магнитный поток машины
, вращающийся вместе с обмоткой возбуждения. На статоре расположена трехфазная обмотка, к которой подключается нагрузка генератора. В результате взаимодействия магнитного поля с проводниками статорной обмотки в ее фазах индуктируются три симметричные ЭДС
,
,
, сдвинутые по фазе друг относительно друга на угол 2π/3. Эти ЭДС обеспечивают на зажимах генератора (и нагрузки) трехфазное напряжение (линейные напряжения
,
,
), которое в свою очередь обусловливает трехфазный ток (линейные токи
,
,
).
|
![]() |
Рисунок 4 — Принципиальные схемы возбуждения синхронных генераторов |
Статорная обмотка судовых генераторов соединяется звездой или треугольником. Нейтральная точка звезды изолируется, так как нейтрального провода в СЭЭС нет. Изоляция нейтральной точки в судовых генераторах обусловлена главным образом требованиями техники безопасности.
Судовые синхронные генераторы бывают брызгозащищенного или водозащищенного типа. Конструкция подшипников должна обеспечивать надежную длительную работу при предельно допустимых кренах, дифферентах и вибрациях. Напряженный температурный режим в судовых машинных отделениях требует принудительного охлаждения генераторов. Обычно применяется воздушное охлаждение с помощью крыльчатки, укрепленной на валу самого генератора (самовентиляция). В большинстве случаев охлаждение современных синхронных генераторов происходит по замкнутому циклу: нагретый в машине воздух поступает в водяной воздухоохладитель, где охлаждается и затем вновь подается в генератор. Воздухоохладитель обычно располагается над генератором и крепится на наружной стороне его корпуса (рис. 3). Такая система вентиляции сложнее и дороже, чем вентиляция по разомкнутому циклу, но она обеспечивает более комфортные условия работы в машинном отделении (не происходит выброса горячего воздуха в помещение), предотвращает загрязнение внутренних поверхностей генератора парами нефтепродуктов и пылью, что повышает его надежность и долговечность, и практически не зависит от температуры воздуха в машинном отделении.
|
В некоторых типах генераторов, в частности в генераторах серии ТК2, применяется жидкостное охлаждение обмоток, являющееся более сложным, но и более эффективным, чем воздушное, и способствующим улучшению массогабаритных показателей генераторов.
Обычно у судовых генераторов, так же, как и у общепромышленных, трехфазная обмотка переменного тока располагается на статоре, а обмотка постоянного тока (обмотка возбуждения) — на роторе. Однако есть типы судовых генераторов малой мощности (например, серии ЕСС), у которых принято обратное расположение обмоток (такие генераторы называются обращенными).
Важнейшим фактором, влияющим на все характеристики генератора, в том числе и на его конструкцию, является способ возбуждения генератора — способ получения, регулирования и передачи в обмотку возбуждения тока возбуждения.
До середины 60-х годов основным вариантом системы возбуждения судовых генераторов была схема независимого возбуждения, при которой в качестве источника постоянного напряжения использовался электромашинный генератор постоянного тока (возбудитель В). Возбудитель устанавливался на общем валу с синхронным генератором и приводился во вращение от общего приводного двигателя. Якорная обмотка возбудителя питала обмотку возбуждения генератора (рис. 4, а). Мощность возбудителя составляла 1,5—4 % мощности синхронного генератора. Этот способ возбуждения имеет существенные недостатки. Главный из них — низкая надежность возбудителя (коллекторная машина). Как показывает практика эксплуатации СЭЭС, большая часть аварий генераторных агрегатов происходит из-за повреждений возбудителя. Кроме того, несмотря на незначительность мощности возбудителя, по сравнению с мощностью синхронного генератора, массо-габаритные характеристики заметно ухудшаются из-за возбудителя. Особенно возрастает длина агрегата.
|
В настоящее время судовые генераторы с возбудителем постоянного тока уже не выпускаются, но на судах постройки 50—60-х годов такие генераторы (главным образом, серии МС) продолжают работать.
Более совершенной является система самовозбуждения, отличающаяся тем, что для возбуждения генератора используется небольшая часть (~2—5 %) электрической энергии, вырабатываемой этим же генератором. Поскольку для возбуждения требуется постоянный ток, а генератор дает переменный, то возникает необходимость в промежуточном преобразовательном звене — выпрямителе (4,б). Один из основных элементов системы — выпрямитель — выполняется на полупроводниковых вентилях (диодах, тиристорах) и обладает достаточно высокой надежностью, малой массой и габаритами, что и определяет широкое применение этого способа возбуждения на судах.
Обычно элементы системы самовозбуждения (автоматического регулирования напряжения) располагаются над статором генератора рядом с воздухоохладителем (рис. 3).
Для обеспечения начального возбуждения используется дополнительный источник постоянного напряжения (например, аккумуляторная батарея), который на время запуска (порядка секунд) подключается к обмотке возбуждения. После того, как на зажимах генератора появляется напряжение, этот источник уже не нужен и его отключают.
Начальное возбуждение практически может быть обеспечено и без дополнительного источника постоянного напряжения за счет остаточной ЭДС, индуктируемой в статорной обмотке остаточным магнитным потоком ротора. В подавляющем большинстве судовых синхронных генераторов с самовозбуждением процесс начального возбуждения при пуске генератора обеспечивается именно за счет остаточной ЭДС.
Перспективной системой возбуждения синхронных генераторов, которую уже начали использовать на судах, является бесщеточная система независимого возбуждения. Генераторы с такой системой возбуждения получили название бесщеточных синхронных генераторов (БСГ).
В настоящее время предложено много вариантов схем возбуждения БСГ. Принципиальная схема одного из вариантов представлена на рис. 4,в. Для возбуждения используется электромашинный возбудитель — синхронный генератор, имеющий две трехфазные обмотки переменного тока: одна расположена на статоре, другая — на роторе. Статорная обмотка возбудителя получает питание от синхронного генератора. Переменное напряжение, снимаемое с роторной обмотки, подается на выпрямитель, который нагружен на обмотку возбуждения синхронного генератора.
Основное достоинство такой системы возбуждения – отсутствие щеточного аппарата (контактных колец и щеток), что повышает удобство эксплуатации и надежность подачи питания в обмотку возбуждения.