Что вам понравилось на сегодняшнем уроке?




Чертежи разверток поверхностей геометрических тел

 

Цель: Научить выполнять проецирование предмета на 3 плоскости.

Развивать пространственное мышление.

Воспитывать аккуратность при выполнении чертежей.

 

Методы: Беседа, объяснение, демонстрация, самостоятельная работа.

 

Оборудование: Учебник, плакат, чертежные инструменты, модели.

 

Тип урока: Изучение нового материала

 

Структура урока

1. Орг. момент – 2-3 мин.

2. Новый материал – 15 мин.

3. Практическя работа - 25 мин.

4. Подведение итогов – 3 мин.

 

 

 

Ход урока

 

Орг. момент.

Здравствуйте, садитесь.

Тема сегодняшнего урока – «Чертежи разверток поверхностей геометрических тел ». Запишите её в тетрадь чертёжным шрифтом (тема написана на доске).

Новый материал

Для изготовления ограждений станков, вентиляционных труб и некоторых других изделий вырезают из листового материала их развертки.

Развертка поверхностей любой прямой призмы представляет собой плоскую фигуру, составленную из боковых граней — прямо­угольников и двух оснований — многоугольников.

 

 

Рис 139.

.

 

Чертежи разверток поверхностей конуса и пирамиды, шестиугольной призмы цилиндра.

Например, у развертки поверхностей шестиугольной призмы (рис. 139, б) все грани — равные между собой прямоугольники шириной а и высотой, a основания — правильные шестиугольни­ки со стороной, равной а.

Таким образом, можно построить чертеж развертки поверхно­стей любой призмы.

Развертка поверхностей цилиндра состоит из прямоугольника и двух кругов (рис. 140, б). Одна сторона прямоугольника равна высоте цилиндра, другая — длине окружности основания. На чер­теже развертки к прямоугольнику пристраивают два круга, диа­метр которых равен диаметру оснований цилиндра

Развертка поверхностей конуса представляет собой плоскую фигуру, состоящую из сектора — развертки боковой поверхности и круга — основания конуса (рис. 141, б).

Построения выполняются так:

1. Проводят осевую линию и из точки s' на ней описывают радиусом, равным длине s'a' образующей конуса, дугу окруж­ности. На ней откладывают длину окружности основания конуса.

Точку s соединяют с концевыми точками дуги.

 

Рис 140.

2. К полученной фигуре — сектору

пристраивают круг. Диа­метр этого круга равен диаметру основания конуса.

Длину окружности при построении сектора можно определить

по формуле С = nD.

Угол а подсчитывают по формуле ,

Где:

d — диаметр окружности основания,

R — длина образующей конуса, ее можно подсчитать по тео­реме Пифагора.

Чертеж развертки поверхностей пирамиды строят так(рис. 142, б).

Из произвольной точки О описывают дугу радиуса R, равного длине бокового ребра пирамиды. На этой дуге откладывают че­тыре отрезка, равные стороне основания. Крайние точки соеди­няют прямыми с точкой О. Затем пристраивают квадрат, равный основанию пирамиды.

Обратите внимание, как оформляют чертежи разверток. Над изображением пишут «Развертка» с чертой внизу. От линий сгиба, которые проводят штрихпунктирной с двумя точками, проводят линии-выноски и пишут на полке «Линии сгиба».

 

Рис 142.

Построение разверток выполняется обычно графичес­кими приемами, с применением способов, предлагае­мых начертательной геометрией.

Поверхности деталей, ограниченных плоскостями или развертывающимися кривыми поверхностями, мо­гут быть развернуты и совмещены с плоскостью точно.

В этом случае на развертке сохраняются точки (отрезки), лежащие на поверхности, причем каждой точке (от­резку прямой) на развертке соответствует вполне опре­деленная и единственная точка (отрезок прямой) на поверхности детали, и наоборот.

На рисунке изображены разверт­ки поверхностей многогранных тел и тел вращения.

Построение развертки поверхности многогранника сводится к определению натуральной величины каж­дой его грани. Сначала вычерчивают развертку боко­вой поверхности, затем к одной из граней присоединя­ют основания многогранника (одно или два — в зависимости от того, призма это или пирамида

Рис 143.

Практическая работа

Совместно с детьми выполнить и оформить развёртки геометрических тел (рис 143):

· Цилиндра

· Конуса

· Призмы

· Пирамиды.

В ходе построения ещё раз остановиться на особенностях выполнения этой работы. Демонстрировать вырезанные развёртки, показать развёртки выполненные детьми в прошедшие годы.

Подведение итога.

Что вам понравилось на сегодняшнем уроке?



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-07 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: