КОНТРОЛЬНАЯ РАБОТА № 2.
по дисциплине «Строительные машины»
Выполнил: студент 3 курса
Направление 08.03.01
Группы ПГС-1492б шифр 08410681
Холодков Д.С.
Проверил: Байдов А.В.
Рязань 2017.
Содержание:
1.Назначение микропереключателей, их конструкция и принцип работы..3
2. Система автоматического управления «АКА - Дормаш»……………….5
3. Экскаваторы непрерывного действия……………………………………..13
4. Техническое обслуживание автомобильных кранов: перечень работ всех видов ТО……………………………………………………………………….15
Назначение микропереключателей, их конструкция и принцип работы.
Микропереключатель представляет собой коммутационное устройство с механическим приводом. Он используется в качестве исполнительных устройств дистанционного управления, а также в качестве базового элемента для ряда коммутирующих изделий: кнопок, кнопочных, клавишных и других переключателей. Например, малогабаритные кнопки управления выполняют на основе микровыключателя типа МП. Микропереключатели также используются в качестве концевых выключателей, отключая поступательно движущееся или поворотные механизмы в конце их хода или поворота.
а - контакты 3 и 4 замкнуты; б - контакты 3 и 4 разомкнуты.
Рисунок 1 – Контактная группа микропереключателя.
Отличительная особенность микропереключателей заключается в конструкции механизма, обеспечивающего быстрое переключение контактов независимо от скорости перемещения приводного механизма. На рисунке 1 показана контактная группа микропереключателя с приводным элементом в двух состояниях. В исходном состоянии контакты 3 и 4 замкнуты под действием результирующей силы пружин. При действии на пружину внешней силы с помощью приводного элемента пружина начинает изгибаться. Одновременно изгибается жестко связанная с ней на одном конце вторая пружина. Когда прогиб этой пружины достигает некоторого значения, первая пружина мгновенно изменяет свое положение. В результате этого сила, действующая на контакт, изменяет свое направление.
Внешние соединения микропереключателя выполняются с помощью пайки к выводам. Переключатель способен работать в цепях с напряжением до 380 В при токе до 3 А. перемещение штока составляет 0,5 – 0,7 мм, необходимое усилие для срабатывания не более 5 – 7 Н. время срабатывания 0,01 – 0,02 с при частоте включений до двух раз в минуту.
Система автоматического управления «АКА - Дормаш»
Автоматизация саморегулирования рабочих органов, элементов 'управления и контроля аэродромных, мелиоративных и дорожно-строительных машин при возведении земляного полотна и устройстве дорожных покрытий в части обеспечения ровности взлетной полосы, траншеи, дороги и покрытий, требуемых поперечного и продольного уклонов, толщины и плотности укладываемого материала осуществляется системой «АКА-Дормаш».
В комплект аппаратуры «АКА-Дормаш» входят следующие устройства (рис.1):
![]() |
I - «Стабилоплан» для скреперов, канавокопателей, дреноукладчиков и др.;
II - «Автоплан» для бульдозеров;
III - «Профиль» для автогрейдеров и профилировщиков;
IV - «Стабилослой» для различных укладочных машин.
В комплекте аппаратуры используют следующие автономные системы управления:
- маятниковые датчики, установленные на борту машины, для контроля положения рабочего органа;
- копирные системы, обеспечивающие контроль положения по внешнему копиру - проволоке (тросу), бордюру, колесу, лыже, поверхности готового покрытия, радио- и световому лучу и т. п.;
- комбинированные системы, в которых контроль углового положения осуществляется автономными датчиками, а определение положения по высоте - копиром.
Все системы, используемые в машинах различного назначения, комплектуют в основном из двух разновидностей автономных маятниковых датчиков 1 (отличающихся между собой тилом установочного приспособления и разрешающей способностью преобразователя), щуповым (копирным) датчиком 2, подъемным устройством 3, двумя разновидностями злектрогидрозолотников 4 при этом один вид золотника является составным элементом другого), унифицированным пультом дистанционного управления 5 и вспомогательным блоком 6. Вместо щупового или маятникового датчика может использоваться следящая система управления с дискретным регулированием. В этом случае дополнительно применяется унифицированное согласующее устройство 7, лазерный излучатель (световой луч вместо копира) 8 и фотоэлектрический приемник 9.
В датчиках углового положения (ДУП) первого поколения используется преобразователь контактного типа. В последующих конструкциях применяется датчик углового положения (ДКБ), в котором преобразование изменения угла отклонения в электрический сигнал осуществляется унифицированным бесконтактным преобразователем. Маятниковый датчик ДКБ (рис.196, а) состоит из закрепленного на валу тонкостенного цилиндра со смещенным, относительно оси вращения, центром тяжести.
![]() |
Экран, связанный с чувствительным элементом, при повороте корпуса датчика (изменении угла наклона рамы машин) изменяет свое положение относительно катушек, закрепленных на корпусе, и изменяет выходной сигнал преобразующего блока.
При работе машины с внешним копирным устройством применяют датчики типа ДЩ (рис.2 ), состоящие из бесконтактного датчика 2 и экрана 1, соединенного с щупом 3. Поворот щупа относительно тросика и соответственно экрана на угол, превышающий допустимое значение, вызывает подачу датчиком дискретного сигнала, осуществляющего управление рабочим органом. В датчике второго поколения ДЩБ используют унифицированный преобразователь аналогового типа с выходным сигналом, пропорциональным угловому перемещению щупа и необходимым для индикации отклонения и в качестве управляющего сигнала. При этом преобразователь перемещения в электрический сигнал является унифицированным и применяется в обоих типах датчиков последнего поколения. Системы автоматического управления по положению рабочего органа машин разделяют на одно-, двух- и трехканальные. При одноканальных системах управления рабочий орган машины удерживается в заданном положении в одной плоскости: продольной у скреперов и бульдозеров, поперечной у автогрейдеров. К таким системам относятся «Стабилоплан-1» и заменяющие их системы последующих поколений, «Стабилоплан-10» и «Копир-Стабилоплан» для скреперов, «Автоплан-1» и «Копир‑Автоплан‑10» - для бульдозеров, «Профиль-1» и «Профиль-10»— для легких и средних автогрейдеров. При двухканальных системах управления стабилизация положения рабочего органа обеспечивается одновременно в продольной и поперечной плоскостях. К этим системам относятся «Комбиплан» для бульдозеров, «Профиль-2» и «Профиль-20» — для средних и тяжелых автогрейдеров, «Стабилослой-1» и «Стабилослой-10» — для укладчиков покрытий. Унифицированный ряд систем автоматического управления типа «Профиль», предназначенных для управления положением рабочих органов, представлен в таблице 1.
Таблица 1 Унифицированный ряд систем типа «Профиль» | ||
Наименование системы | Вид системы | Применение системы |
Копир-Автоплан-10 | Одноканальная (автономная, копирная по жестким направляющим) | Бульдозеры |
Копир-Стабилоплан-10 | Одноканальная (автономная, копирная по жестким направляющим, копирная по лазерным направляющим) | Скреперы |
Стабилослой-10 | Двухканальная комбинированная (автономная,, копирная по жестким направляющим) | Асфальтоукладчики |
Комбиплан-10 | Двухканальная комбинированная (автономная, копирная по лазерным направляющим) | Бульдозеры |
Профиль-30 (включая Профиль-10 и Профиль-20) | Двухканальная комбинированная (автономная, копирная по жестким направляющим, копирная по лазерным направляющим) | Автогрсйдеры, асфальто-укладчики, дреноукладчики, торфяные профилировщики |
При трехканальных системах управления, помимо фиксации положения рабочего органа в двух ортогональных вертикальных плоскостях, имеется еще и управление движением машины в плане («по курсу»). Эти системы управления «Профиломат-1», «Профиломат-2, 5, 6 и 7» устанавливаются на профилировщиках оснований и укладчиках покрытий, входящих в комплект машин типа ДС-110 для скоростного строительства автомобильных дорог и взлетно-посадочных полос аэродромов.
Копирные системы автоматики, использующие внешний тросик (копир-проволоку), имеют ряд недостатков. К ним следует отнести: повышенную трудоемкость очень точных работ по установке тросика; появление погрешностей в работе копирно-щуповой системы в связи с провисанием тросика; колебания щупа; ошибки при установке тросика; постоянные работы по поддержанию тросика в заданном положении.
При использовании в качестве жесткой опорной базы уже готовых дорожного основания, дорожного покрытия, бордюрного камня или дорожной разметки воздействие на датчик может передаваться через промежуточный механизм, перемещающийся по указанным поверхностям. В качестве такого механизма‑щупа используются колесо, лыжа с выравнивающими шарнирными или рычажными устройствами. Так, на машинах, осуществляющих холодное фрезерование дорожных покрытий (ремонтные работы по снятию верхнего изношенного слоя покрытия), для выдерживания продольного уклона глубину фрезерования на правой и левой сторонах рабочего органа (фрезы) устанавливают отдельно в зависимости от базовой плоскости, (рис.3, а). Заданный уклон относительно базовой плоскости /, на которую опирается шуп — лыжа 2, устанавливают с регистрацией на шкалах рукоятками 4. Подъем и опускание фрезы 8 производят двумя гидроцилиндрами 6, управляемыми через золотники 5 от датчиков с блоками сравнения 3 действительной и заданной величины.
В случае отсутствия на одной стороне рабочего органа базовой плоскости или необходимости выдерживания задаваемого поперечного профиля поверхности дорожного покрытия используют регулятор поперечного уклона 7 (рис.3, б). Он представляет собой цифровой задатчик уклона и автоматически сохраняет заданный поперечный уклон независимо от установленной глубины фрезерования. Этот регулятор может устанавливаться как на одной, так и на другой стороне рабочего органа машины.
![]() |
В настоящее время наиболее прогрессивными и используемыми в качестве копиров являются лазерные системы управлении. В них широко применены элементы микроэлектроники, интегральные схемы, микропроцессоры, логические запоминающие и вычислительные устройства. Такие системы используются как для управления одной строительной или дорожной машиной, так и группой машин на значительных площадях и расстояниях (до 1500 м) при достаточно высоких скоростях движения. Применение этих систем обеспечивает как раздельное, так и одновременное управление курсом машины и толщиной укладываемого слоя материала (бетон, асфальт) укладочными машинами, а также автоматическую ориентацию рабочих органов в пространстве. Опорной базой в этой системе служит секторная в горизонтальной плоскости или крестообразная форма излучения, образованная пересечением двух секторов.
Для управления рабочими органами строительных и дорожных машин широко, используют лазерные координаторы различных конструкций и назначения. К достоинствам сканирующих координаторов (рис.4 а) следует отнести возможность при одном излучателе быть двухкоординатными, а также простота их изготовления и эксплуатации. Они состоят из лазерного излучателя 1 с формирователем оптического
![]() |
луча 2, воздействующего на фотоприемник 4, установленный на рабочем органе 9 (отвал землеройно-транспортной машины). Полученный фотоприемником сигнал проходит через блок его усиления 5, электронный ключ 6, цифровое измерительное устройство 7 и подается на датчик положения рабочего органа 3, связанного с блоком рассогласования фотоприемника 8. Растровые автокоординаторы (рис.4, б) используют для программного управления рабочими органами строительных и дорожных машин. От сканирующих излучателей они отличаются наличием растрового излучателя, фильтрами частот f1 (11) и f2 (12), детекторами 13 и 14 и усилительно-множительным устройством 15. К перспективному, оборудованию для применения на строительных и дорожных машинах следует отнести и радиоанализаторные координаторы.
В настоящее время осуществляется серийное производство современных отечественных электронных устройств отображения информации для экскаваторов и погрузчиков, ограничителей нагрузки кранов типа ОНК для самоходных гидравлических кранов и унифицированный ряд систем «Профиль-30» для автогрейдеров, скреперов, бульдозеров и асфальтоукладчиков, включающий в себя и заменяющий все ранее разработанные системы для этих машин.
Наряду с НИИСтройдормашем большие работы по разработке и внедрению в строительных машинах различных систем регулирования, управления и контроля ведутся в различных учебных и научных институтах, проектных организациях и промышленных предприятиях.