Предпусковая интеграция.




В стабильных условиях, например, в ситуации лабораторного эксперимента, пусковой стимул реализует готовую предпусковую интеграцию, которую можно охарактеризовать как готовность систем будущего поведения, формирующуюся в процессе выполнения предыдущего. Она направлена в будущее, но стабильность ситуации делает очевидной связь стимул — ответ. Однако анализ нейронной активности в поведении четко показывает, что организация последней определяется тем, какой результат достигается в данном поведении, тогда как стимул лишь "запускает", "разрешает" реализацию.

В тех случаях, когда один и тот же по физическим параметрам стимул "запускает" разные поведенческие акты (например, пищедобывательный или оборонительный), разными в этих актах оказываются не только характеристики активности нейронов, но даже и сам набор вовлеченных клеток, в том числе и в "специфических" по отношению к стимулу областях мозга (например, в зрительной коре при предъявлении зрительного стимула).

28. Опережающее отражение действительности

Опережающее отражение действительности - название в 1962 г. предложил советский физиолог Пётр Кузьмич Анохин (1898-1974).
Обозначает свойство живых организмов опережать во времени и пространстве закономерное течение последовательных событий внешнего мира.

Физиологи и философы установили, что живые организмы на основе экстраполяции опыта выработали способность в той или иной мере моделировать будущее, и дали ей название «опережающее отражение». Ныне считают даже, что «...само возникновение жизни, по-видимому, было бы невозможно без опережающего отражения, позволяющего заблаговременно принимать решения для приспособления к окружающей обстановке с целью сохранения биосистемы!» (Урсул А. Д. Отражение и информация.— М., 1975.— С. 165.)

 

Полагают также, что с возникновением второй сигнальной системы опережающее отражение действительности достигло апогея в способности человеческого мозга предвидеть грядущие события (Лисичкин В. А. Теория и практика прогностики.— М., 1972.— С. 19). В XX веке возникла и получила широкое развитие кибернетика — наука об управлении, регулировании и передаче информации в организмах, машинах, системах организмов и машин.

Весьма часто эмоция оказывается как бы непосредственным откликом на изменение обстановки, и работа мозга по анализу этой обстановки ускользает от сознания, тем более что такой анализ осуществляется чрезвычайно быстро. Канадский ученый Д. Хебб убедительно показал, что страх — это отнюдь не реакция на угрозу, но эмоциональная реакция на степень защищенности субъекта от нависшей над ним угрозы. Казалось бы, не все ли равно: опасность, от которой я защищен, перестает быть опасностью. Тем не менее стремительно развертывающаяся (хотя и неосознаваемая) оценка защищенности требует дополнительных операций, включающих и учет совершенства навыков, и время, необходимое для соответствующих действий, и степень усталости субъекта, и многое другое. Быстрота подобной оценки объясняется богатством ранее накопленного опыта, высокой автоматизацией необходимых действий, детали которых давно уже перестали контролироваться сознанием. Вот почему, встретив опасность, мы как бы «сразу» чувствуем страх, поскольку подготовка и оформление этого страха осуществлены мозгом на уровне подсознания.

 

Вместе с тем имеется и другая разновидность эмоций, формирующихся также вне контроля сознания, но существенно отличных от только что описанных. Мы имеем и виду те трудно определяемые словами «предчувствия», которые возникают В процессе творческой деятельности и связаны с представлением об интуиции. У человека, занятого решением какой-либо трудной задачи, вдруг появляется радостное ощущение близости этого решения или, напротив, отрицательное чувство отдаления, уходи от желанной цели. Ни в первом, ни во втором случае человек Не может ОБЪЯСНИТЬ, почему у него возникло это эмоционально окрашенное состояние. Тем не менее оно побуждает субъекта остановиться, прекратить дальнейшие поиски и попытаться самостоятельно разобраться в том, соответствует или не соответствует эмоциональная оценка ситуации реальному положению вещей.

 

По-видимому, в данном случае также имело место изменение — возрастание или уменьшение вероятности достижения цели, следствием чего и явилась эмоциональная реакция, хотя оценка вероятности произошла на неосознаваемом уровне.

 

Подведем итоги.

 

1. Организмы более всего заинтересованы в сохранении бесценного дара — жизни!

 

2. Организмы, по-видимому, умеют вырабатывать как стратегию достижения, так и стратегию избежания, основанные на знании причинно-следственных связей и господствующих в окружающем их реальном мире закономерностей. К этому следует добавить, что мир отнюдь не хаотичен, что масса «взаимных состояний его объектов и частиц не реализуется в силу существующих законов, что в каком-то смысле упрощает задачу.

 

3. Практически неоспоримо, что будущее в какой-то мере управляемо, подвластно нам, и, варьируя текущее поведение, организмы могут влиять на будущее в желательном для них направлении, формировать его по своему вкусу.

 

4. Наличие опережающего отражения — способности умозрительного синтеза будущего, то есть моделирования вероятных исходов задуманных, зародившихся или уже развивающихся ситуаций, приводит нас к мысли о возможности естественного формирования системы для эффективной и целесообразной защиты организма.

29. Эволюционные этапы развития ВНД

Простейшие одноклеточные организмы не имеют нервной системы, регуляция жизнедеятельности у них происходит только за счёт гуморальных механизмов.

Нервная система, появившаяся у многоклеточных организмов, позволяет управлять системами организма более дифференцированно и с меньшими потерями времени на проведение командного сигнала (стимула).

I этап – образование сетевидной нервной системы. На современном этапе эволюции такой тип нервной систем имеют кишечнополостные, например, гидра (рис. 12). Все нейроны у них являются мультиполярными и объединяются за счёт своих отростков в единую сеть, пронизывающую всё тело. При раздражении любой точки тела гидры возбуждается вся нервная система, вызывая движение всего тела. Эволюционным отголоском этого этапа у человека является сетевидное строение интрамуральной (СНОСКА: Интрамуральная – расположенная в толще стенки желудка или кишечника) нервной системы пищеварительного тракта (метасимпатической вегетативной нервной системы).

II этап – формирование узловой нервной системы связан с дальнейшей интеграцией организма и необходимостью централизованной переработки информации для ускорения этого процесса. На этом этапе произошла специализация нейронов и их сближение с образованием нервных узлов – центров. Отростки этих нейронов образовали нервы, идущие к рабочим органам. Централизация нервной системы привела к формированию рефлекторных дуг. Процесс централизации происходил двумя путями (рис. 13): с образованием радиальной (несимметричной) нервной системы (иглокожие, моллюски) и лестничной (симметричной) системы (например, плоские и круглые черви).

Радиальная нервная система, при которой все нервные ганглии сосредотачиваются в одном или двух-трёх местах, оказалась мало перспективной в эволюционном плане. Из животных, имеющих несимметричную ЦНС, только осьминоги достигли низшего уровня перцептивной психики, остальные же не поднялись выше сенсорной психики.

При формировании ЦНС лестничного типа (как, например, у планарий, см. рис. 13, А) ганглии формируются в каждом сегменте тела и соединяются между собой, а также с сегментами верхних и нижних уровней посредством продольных стволов. На переднем конце нервной системы развиваются нервные узлы, отвечающие за восприятие информации от передней части тела, которая в процессе движения первой и чаще сталкивается с новыми стимулами. В связи с этим головные ганглии беспозвоночных развиты сильнее остальных, являясь прообразом будущего головного мозга. Отражением этого этапа формирования ЦНС у человека является строение вегетативной нервной системы в виде параллельно идущих цепочек симпатических ганглиев.

III этапом является образование трубчатой нервной системы. Такая ЦНС впервые возникла у хордовых (ланцетник) в виде метамерной (СНОСКА: Метамерная – непрерывная, сплошная, равномерная.) нервной трубки с отходящими от неё сегментарными нервами ко всем сегментам туловища – туловищный мозг (рис. 14). Появление туловищного мозга связано с усложнением и совершенствованием движений, требующих координированного участия мышечных групп разных сегментов тела.

IV этап связан с образованием головного мозга. Этот процесс называется цефализацией (от греч. «encephalon» – головной мозг). Дальнейшая эволюция ЦНС связана с обособлением переднего отдела нервной трубки, что первоначально обусловлено развитием анализаторов, и приспособлением к разнообразным условиям обитания (рис. 15).

Филогенез головного мозга, согласно схеме Е.К. Сеппа и соавт. (1950), также проходит несколько этапов. На первом этапе цефализации из переднего отдела нервной трубки формируются три первичных пузыря. Развитие заднего пузыря (первичный задний, или ромбовидный мозг, rhombencephalon) происходит у низших рыб в связи с совершенствованием слухового и вестибулярного анализаторов, воспринимающих звук и положение тела в пространстве (VIII пара головных нервов). Эти два вида анализаторов наиболее важны для ориентации в водной среде и являются, вероятно, эволюционно наиболее ранними. Так как на этом этапе эволюции наиболее развит задний мозг, в нём же закладываются и центры управления растительной жизнью, контролирующие важнейшие системы жизнеобеспечения организма – дыхательную, пищеварительную и систему кровообращения. Такая локализация сохраняется и у человека, у которого выше указанные центры располагаются в продолговатом мозге.

Задний мозг по мере развития делится на собственно задний мозг (metencephalon), состоящий из моста и мозжечка, и продолговатый мозг (myelencephalon), являющийся переходным между головным и спинным мозгом.

На втором этапе цефализации произошло развитие второго первичного пузыря (mesencephalon) под влиянием формирующегося здесь зрительного анализатора; этот этап также начался ещё у рыб.

На третьем этапе цефализации формировался передний мозг (prosencephalon), который впервые появился у амфибий и рептилий. Это было связано с выходом животных из водной среды в воздушную и усиленным развитием обонятельного анализатора, необходимого для обнаружения находящихся на расстоянии добычи и хищников. В последующем передний мозг разделился на промежуточный и конечный мозг (diencephalon et telencephalon). Таламус стал интегрировать и координировать сенсорные функции организма, базальные ганглии конечного мозга стали отвечать за автоматизмы и инстинкты, а кора конечного мозга, сформировавшаяся изначально как часть обонятельного анализатора, со временем стала высшим интегративным центром, формирующим поведение на основе приобретённого опыта.

V этап эволюции нервной системы – кортиколизация функций (от лат. «cortex» – кора) (рис. 16). Полушария большого мозга, возникшие у рыб в виде парных боковых выростов переднего мозга, первоначально выполняли только обонятельную функцию. Кора, сформировавшаяся на этом этапе и выполняющая функцию переработки обонятельной информации, называется древней корой (paleocortex, палеокортекс). Она отличается малым числом слоёв нейронов (2–3), что является признаком её примитивности. В процессе дальнейшего развития других отделов коры большого мозга древняя кора смещалась вниз и медиально. У разных видов она сохраняла свою функцию, но относительные её размеры уменьшались. У человека древняя кора представлена в области нижнемедиальной поверхности височной доли (переднее продырявленное вещество и смежные с ним участки), функционально она входит в лимбическую систему и отвечает за инстинктивные реакции (см. Раздел 6.5.2.1.2.).

Начиная с амфибий (см. рис. 16), происходит образование базальных ганглиев (структур полосатого тела) и так называемой старой коры (archicortex, архикортекс) и повышается их значимость в формировании поведения. Базальные ганглии стали выполнять ту же функцию, что и архикортекс, значительно расширив диапазон и сложность автоматических, инстинктивных реакций.

Старая кора, как и древняя, состоит только из 2–3 слоёв нейронов. У амфибий и рептилий она занимает верхние участки больших полушарий. Однако, начиная с примитивных млекопитающих, по мере увеличения новой коры, она постепенно смещается на срединную поверхность полушарий. У человека этот вид коры находится в зубчатой извилине и гиппокампе.

Старая кора включена в лимбическую систему, в которую кроме неё входят таламус, миндалина, полосатое тело и древняя кора (см. Раздел 6.5.2.1.2.).

С образованием этой системы мозг приобретает новые функции – формирование эмоций и способность к примитивному научению на основе положительного или отрицательного подкрепления действий. Эмоции и ассоциативное научение значительно усложнили поведение млекопитающих и расширили их адаптационные возможности.

Таким образом, нервная система проходит длительный путь развития, являясь самой сложной системой, созданной эволюцией. Эволюционные законы развития нервной системы были сформулированы М. И. Аствацатуровым — Основателем биогенетического направления в неврологии.

Сущность этих законов сводится к следующему:

1. Нервная система возникает и развивается в процессе взаимодействия организма с внешней средой. Нервная система лишена стабильности, изменяясь и непрерывно совершенствуясь в фило-и онтогенезе.

2. Сложный и подвижный процесс взаимодействия организма с внешней средой вырабатывает, совершенствует и закрепляет новые виды реакций, лежащих в основе формирования новых функций. Ведущим в этом развитии является функциональное звено.

3. Развитие, закрепление более совершенных и адекватных реакций и функций представляют собой результат действия на ор-ганизм внешней среды, т. е. приспособления его к данным усло

виям существования. Борьба за существование как биологический процесс имеет место, но не является ведущим фактором в совершенствовании организма и его функций. Основное в развитии и совершенствовании функций нервной системы — приспособление (адаптация) организма к среде.

4. Функциональной эволюции (физиологической, биофизической, биохимической) соответствует эволюция морфологическая. Вновь приобретенные функции постепенно закрепляются. Наряду с совершенствованием функции происходит развитие и совершенствование ее морфологического субстрата.

5. Древние функции не отмирают с появлением новых, а вырабатывается их определенная субординация, соподчиненность.

6. В процессе эволюции древние аппараты нервной системы не отмирают, а только видоизменяются, приспосабливаются к новым внешним условиям.

7. Как уже отмечалось, онтогенез нервной системы повторяет ее филогенез.

8. При выпадении новых функций нервной системы проявляются ее древние функции. Многие клинические признаки заболеваний, наблюдаемые при нарушении функций эволюционно более молодых отделов нервной системы, являются проявлением функций более древних структур, т. е. в патологических условиях наступает определенный регресс нервной системы на низшую ступень филогенетического развития. Примером может служить повышение сухожильных и периостальных рефлексов или появление патологических рефлексов при снятии регулирующего влияния коры большого мозга.

9. Самыми ранимыми отделами нервной системы являются филогенетически более молодые, в частности кора большого мозга, которая еще не выработала защитных механизмов, в то время как древние отделы на протяжении тысячелетий взаимодействия с внешней средой успели выработать и накопить определенные механизмы противодействия вредным факторам.

10. Чем филогенетически более молодыми являются нервные структуры, тем в меньшей степени они обладают способностью восстановления (регенерации).



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: