Этапы постнатального развития ВНД




Постнатальный период онтогенеза подразделяют на одиннадцать периодов: 1-й - 10-й день - новорожденные; 10-й день - 1 год - грудной возраст; 1-3 года - раннее детство; 4-7 лет - первое детство; 8-12 лет - второе детство; 13-16 лет - подростковый период; 17-21 год - юношеский возраст; 22-35 лет - первый зрелый возраст; 36-60 лет - второй зрелый возраст; 61-74 года - пожилой возраст; с 75 лет - старческий возраст, после 90 лет - долгожители. Завершается онтогенез естественной смертью.

Постнатальный онтогенез нервной системы человека начинается с момента рождения ребенка. Головной мозг новорожденного весит 300-400 г. Вскоре после рождения прекращается образование из нейробластов новых нейронов, сами нейроны не делятся. Однако к восьмому месяцу после рождения вес мозга удваивается, а к 4-5 годам утраивается. Масса мозга растет в основном за счет увеличения количества отростков и их миелинизации. Максимального веса мозг мужчин достигает к 20-29 годам, а женщин к 15-19. После 50 лет мозг уплощается, вес его падает и в старости может уменьшиться на 100 г.

Эмбриональное развитие органов и систем определяется генетически фиксированными факторами, сложившимися в филогенезе. Общим правилом эмбриогенеза является асинхронность развития органов, систем и нервных центров, которые регулируют их функции. То есть существуют различия в темпах их формирования и созревания.

При этом органы во время роста не способны к созреванию и дифференциации, эти процессы начинаются только после завершения роста. Важно отметить, что органы, находящиеся на разных этапах развития, всегда функционируют согласовано, обеспечивая работоспособность всей системы организма. Асинхронность развития органов связана с определённой ограниченностью потока питательных веществ и кислорода, поступающего эмбриону. Поэтому, у разных видов в первую очередь формируются те органы и системы, которые являются наиболее важными для сохранения вида и совершенно необходимыми для поддержания жизни в самом начале постнатального периода. Развивающийся организм уже в пренатальном периоде начинает производить движения, которые после рождения станут элементами двигательных актов. До рождения особи эти движения не имеют соответствующего функционального значения, то есть ещё не могут играть приспособительной роли в общении животного со средой его обитания. Иными словами поведение эмбриона имеет преадаптационное значение, но является началом и основой всего процесса развития поведения в онтогенезе. Необходимо подчеркнуть, что уровень эмбриональной преадаптации не является строго определённым, так как условия развития и функционирования развивающихся органов и систем эмбриона определяются также и условиями жизни родителей, их взаимодействиями с компонентами среды. Так как проблеме эмбриональной преадаптации посвящено мало исследований и большинство из них проведены на птичьих эмбрионах, изменение поведения в пренатальный период можно охарактеризовать только в общих чертах, подчеркнув, что разнообразие реакций эмбриона увеличивается по мере усложнения организации вида. Поведение в эмбриональный период складывается из генетически заложенных инстинктивных движений. На ранних стадиях эмбриогенеза за счёт спонтанной активности мотонейронов происходит периодическое нерефлекторное сокращение соматической мускулатуры. В результате осуществляется подготовка эффекторов к работе, которая сможет осуществляться по достижении определённой степени зрелости центральной нервной системы. На этих этапах зародыши не дифференцируют раздражители и отвечают на них генерализовано, повышая или снижая общий уровень подвижности независимо от характеристик стимулов. По мере созревания зародыша наблюдается изменение способности отвечать повышением двигательной активности в ответ на воздействие неблагоприятных факторов. В результате развития ЦНС, сенсорной и двигательной сферы, эмбрион начинает дифференцировано отвечать только на значимые для него раздражители и сила реакции зависит от силы стимуляции.

33,34 Зависимость ВНД от условий индивидуального развития

Типы высшей нервной деятельности

 

Представление о типологических особенностях нервной системы человека и животных является одним из определяющих в павловском учении о высшей нервной деятельности. Соотношение силы, уравновешенности и подвижности основных нервных процессов определяет типологию высшей нервной деятельности индивида. Систематизация типов высшей нервной деятельности основана на оценке трех основных особенностей процессов возбуждения и торможения: силы, уравновешенности и подвижности, выступающих как результат унаследованных и приобретенных индивидуальных качеств нервной системы. Тип как совокупность врожденных и приобретенных свойств нервной системы, определяющих характер взаимодействия организма и среды, проявляется в особенностях функционирования физиологических систем организма и прежде всего самой нервной системы, ее высших «этажей», обеспечивающих высшую нервную деятельность.

 

Типы высшей нервной деятельности формируются на основе как генотипа, так и фенотипа. Генотип формируется в процессе эволюции под влиянием естественного отбора, обеспечивая развитие наиболее приспособленных к окружающей среде индивидов. Под влиянием реально действующих на протяжении индивидуальной жизни условий внешней среды генотип формирует фенотип организма.

 

Современные представления о типах высшей нервной деятельности в значительной степени могут отождествляться с четырьмя типами человеческого темперамента (холерический, меланхолический, флегматический, сангвинический), выделенными еще древнегреческим врачом Гиппократом (IV в. до нашей эры) на основе наблюдения за поведением людей. Сложная комбинация передаваемых по наследству особенностей в сочетании с большим разнообразием индивидуально приобретенного поведения (в тесной связи с расовыми, национальными, климатическими, социально-культурными условиями жизни современного человека) позволяет лишь в самых общих чертах идентифицировать определенный тип высшей нервной деятельности.

 

В условно-рефлекторной деятельности сила процесса возбуждения определяется скоростью и прочностью выработки условных рефлексов, сила процесса торможения находит отражение в скорости и прочности выработки дифференцировочного и запаздывающего торможения. Лабильность, подвижность нервных процессов оцениваются в показателях прочности переделки сигнального значения условных раздражителей (с возбудительного на тормозной и наоборот).

 

Комбинация этих параметров центрального возбуждения и торможения образует следующие четыре типа высшей нервной деятельности (схема 15.1).

 

Сангвинический тип характеризуется достаточной силой и подвижностью возбудительного и тормозного процессов (сильный, уравновешенный, подвижный).

 

Флегматический тип отличается достаточной силой обоих нервных процессов при относительно низких показателях их подвижности, лабильности (сильный, уравновешенный, инертный).

 

Холерический тип характеризуется высокой силой возбудительного процесса с явным преобладанием его над тормозным и повышенной подвижностью, лабильностью основных нервных процессов (сильный, неуравновешенный, безудержный).

 

Меланхолический тип характеризуется явным преобладанием тормозного процесса над возбудительным и их низкой подвижностью (слабый, неуравновешенный, инертный).

 

Необходимо иметь в виду, что отмеченные выше типы высшей нервной деятельности представляют собой крайние классические типы, которые в чистом виде либо вообще не встречаются, либо встречаются крайне редко.

 

Существенные различия в типологии человека (в отличие даже от высших животных) обусловлены наличием у него второй сигнальной системы, его мыслительной творческой деятельностью. На это обстоятельство обратил внимание еще И. П. Павлов, который предложил применительно к человеку различать два типа: художественный и мыслительный. Для художественного типа характерно образное мышление; познавательные процессы и творческая деятельность преимущественно ориентированы на яркие художественные образы; в общем поведении человека преобладают стимулы первой сигнальной системы, вызывающие в мозге их яркие образы. Напротив, у мыслительного типа процессы познания, мышление преимущественно оперируют абстрактными понятиями, определяющими в индивидуальном поведении становятся сигналы сигналов — стимулы второй сигнальной системы. Естественно, это два крайних значения в типологии человека; обычно в индивидуальной типологии человека можно лишь говорить о предрасположенности, большей или меньшей выраженности одного из отмеченных типов высшей нервной деятельности.

Рецептивные поля

Рецептивное поле (англ. receptive field) сенсорного нейрона — участок с рецепторами, которые при воздействии на них определённого стимула приводят к изменению возбуждения этого нейрона.
Концепция рецептивных полей может быть применима ко всей нервной системе. Если множество сенсорных рецепторов образуют синапсы c единственным нейроном, они совместно формируют рецептивное поле этого нейрона. Например, рецептивное поле ганглионарной (ганглиозной) клетки сетчатки глаза представлено фоторецепторными клетками (палочками или колбочками), а группа ганглионарных клеток в свою очередь создаёт рецептивное поле для одного из нейронов мозга. В итоге к одному нейрону более высокого синаптического уровня сходятся импульсы от многих фоторецепторов; и этот процесс называется конвергенцией.

Периферия рецептивного поля - это область тела, стимуляция которой сопровождается ответом сенсорных нейронов.

Рецепторная клетка воспринимает энергию внешнего раздражения и перерабатывает ее в нервный импульс. При этом каждая рецепторная клетка воспринимает раздражения с определенной зоны - рецептивного поля, представляющего собой все точки периферического отдела анализатора, возбуждение которых влияет на данный нейрон. Рецептивным полем называется совокупность точек на периферии, с которых периферические стимулы влияют на данную нервную клетку.

Рецептивные поля сенсорных нейронов широко варьируют по размерам. Одни нейроны имеют очень маленькие рецептивные поля - например, в зрительной коре для некоторых нейронов участок сетчатки, в пределах которого световой стимул оказывает на них действие, составляет всего 0,02 кв.мм. В то же время другие клетки в центральной нервной системе активируются кожными стимулами, действующими на область, занимающую всю ногу, причем эфффективны и прикосновение, и вибрация, и холодовые стимулы. Рецептивные поля смежных нейронов в сенсорном центре сильно перекрываются, что позволяет с большей точностью определять положение стимула.

Как правило, центр и периферия рецептивного поля связаны с противоположными ответами - например, от стимула в центре частота разрядов повышается во время стимуляции, а на периферии действие этого стимула будет обратное. Такая организация рецептивных полей основана на латеральном торможении. Разделение рецептивного поля на центр и периферию с противоположными свойствами обостряет способность к пространственному различению в мозговых центрах и усиливает контраст, т.е. ощущаемое различие между двумя интенсивностями стимулов. Размеры и организация рецептивных полей не являются неизменным свойством сенсорного нейрона. Величина рецептивного поля может быть уменьшена управляемыми центральными тормозными процессами, и даже относительные размеры центра и периферии могут изменяться.

Понятие рецептивного поля включает в себя сложную организацию на разных уровнях: синаптические связи сенсорной клетки с популяцией рецепторов, специализацию в отношении определенных качеств и возможность контролируемых из центров функциональных изменений в синаптических связях. Эти высокоспециализированные связи, как было показано в опытах на новорожденных котятах, существуют уже при рождении, однако могут быть утрачены, если не используются. Таким образом, хотя очень специфические синаптические связи являеются врожденными, они могут быть изменены практикой или фактором научения, в особенно восприимчивые периоды развития животного.

Во многих случаях, рецептивные поля имеют свою внутреннюю организацию. Часто стимуляция одной из частей РП ведет к возбуждению сенсорного нейрона, в другой - к торможению. Рецептивные поля существенно разнятся и по площади. В тех участках сенсорной поверхности, где важно, чтобы стимул был точно локализован, РП малы. Напротив, там, где локализация стимула не так важна, РП больше. Это хорошо показано опытом Фехнера по изучению порога в двух точках. Некоторые части тела - кончики пальцев и губы - способны различать два близко расположенных стимула (укола), тогда как другие (тыльная сторона ладони, спина) - только значительно дальше разнесенные стимулы. В некоторых случаях есть и связь между чувствительностью и точностью локализации ощущения.

36. Проекционные поля

Правильным будет ограничить понятие проекционной области лишь группой специальных нервных клеток, расположенных на известной территории, только в определенном клеточном слое коры. Только площадью этой клеточной группы и определяется проекционная область.
В остальном вся кора этой территории, несомненно, входит в состав данного анализатора. Таким образом, передняя, скажем, центральная, извилина полностью входит в широкие поля двигательного анализатора, задняя центральная извилина — кожного и т.д.

Двигательные проекционные области для мускулатуры противоположной стороны тела расположены в передней центральной извилине.
Проекция для отдельных мышечных групп представлена здесь в порядке, обратном расположению их в теле: верхним отделом передней центральной извилины (и частично lobulus paracentralis на внутренней поверхности полушария) соответствует нога, средним отделам — рука и нижним отделам передней центральной извилины — лицо, язык, гортань и глотка. Проекция движений туловища, по-видимому, представлена в заднем отделе верхней лобной извилины.

Проекции поворота глаз и головы в противоположную сторону соответствует задний отдел второй лобной извилины

Чувствительные проекционные области находятся в задней центральной извилине. Проекция кожных рецепторов аналогична соматотопическому представительству в передней центральной извилине: в верхнем отделе извилины представлена чувствительность нижней конечности, в среднем — руки и в нижнем — головы.
Зрительная проекционная область расположена в затылочных долях, на внутренней поверхности полушарий, по краям и в глубине fissurae calcariпае. В каждом полушарии представлены противоположные поля зрения обоих глаз, причем область, расположенная над fissura calcarina (cuneus), соответствует нижним, а область под ней (gyms lingualis) — верхним квадрантам полей зрения.
Слуховая проекционная область коры находится в височных долях, в первой (верхней) височной извилине и в извилинах Гешля (на внутренней поверхности височной доли).
Обонятельная проекционная область расположена также в височных долях, главным образом в gyrus hyppocampi, в особенности в его переднем отделе (крючке, или uncus). Есть основания предполагать, что близко к обонятельным территориям расположены и вкусовые.
Все проекционные области коры являются двухсторонними, симметрично расположенными в каждом полушарии. Часть из них связана только с противоположной стороной (передняя и задняя центральные извилины, зона поворота глаз и головы, зрительная область). Корковые слуховые, обонятельные и вкусовые территории каждого полушария связаны с соответствующими рецепторными полями на периферии с обеих сторон (противоположной и своей).

Необходимо лишь уточнить понятие о проекционных территориях, полях или областях в коре головного мозга, четко отграниченных, с определенным соматотопическим распределением, где существуют группы специальных клеток, расположенных притом лишь в данном слое коры. Эти территории входят в состав анализатора, находятся в пределах его, являются его проекционной зоной. По сути говоря, речь идет о высшем или корковом конце анализатора как функциональной системы. Связи коры больших полушарий с нижележащими отделами нервной системы и периферией (рецепторной системой и рабочими, исполнительными, органами) осуществляются (через системы проводников) именно через проекционные территории. Импульсы «произвольных» движений (результат корковой, условнорефлекторной деятельности) через систему нисходящих проводников проходят к скелетной мускулатуре. От периферии — бесконечно широкого поля рецепторов кожных, мышечных, специальных органов чувств, висцеральных и других — центростремительные импульсы через систему афферентных путей входят в соответствующие проекционные чувствительные территории, к специальным клеткам определенного слоя коры, и отсюда — в пределы широких территорий анализатора, где и происходит анализ и синтез восприятия.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: