Несобственные интегралы первого рода




Вычисление длины дуги плоской кривой

Пусть известна функция и требуется найти длину дуги, заданной функцией , где .

Для определения длины дуги необходимо вычислить определенный интеграл:

Рассмотрим случай параметрического задания кривой:

где . В этом случае для определения длина дуги вычисляется определенный интеграл:

Рассмотрим случай, когда кривая задается в полярных координатах где . Тогда для определения длины дуги вычисляется следующий определенный интеграл:

5.

Вычисление объемов с помощью тройных интегралов
 
Объем тела U в декартовых координатах Oxyz выражается формулой В цилиндрических координатах объем тела равен В сферических координатах, соответственно, используется формула
Пример 1
 
Найти объем конуса высотой H и радиусом основания R (рисунок 2). Решение.
   
Рис.1    

Конус ограничен поверхностью и плоскостью z = H (рисунок 1). В декартовых координатах его объем выражается формулой

Вычислим этот интеграл в цилиндрических координатах, которые изменяются в пределах

Получаем (не забудем включить в интеграл якобиан ρ):

Находим объем конуса:

6.

Относительно подынтегральной функции мы будем предполагать, что она непрерывна на отрезке интегрирования, а также, когда это понадобится, что она имеет на этом отрезке производные до некоторого порядка.

Вычислять значение интеграла мы будем по значениям функции в некоторых точках отрезка . Эти значения мы будем предполагать известными, то есть предполагать, что у нас есть некоторый эффективный способ вычисления значений функции с любой требуемой точностью. Формулы, позволяющие по известным значениям приближённо определить значение , называются квадратурными формулами.

Для наглядности мы будем прибегать к геометрической интерпретации смысла определённого интеграла, как площади некоторой криволинейной трапеции, в случае функции . Следует, однако, иметь в виду, что квадратурные формулы, которые мы будем получать, имеют смысл для функций, принимающих значения произвольного знака.

При вычислить интеграл значит найти площадь под графиком , расположенную над отрезком . Естественной идеей является следующее построение: разобьём отрезок на части точками деления и положим и (см. определение значения определённого интеграла). Тогда разбиение отрезка состоит из отрезков при . Вместо площади под графиком, равной , будем приближённо находить суммарную площадь узких полосок, лежащих над отрезками разбиения (см. рис.).

Рис.5.1.

Несобственные интегралы первого рода

Определение Предположим, что функция задана на бесконечном промежутке вида и интегрируема на любом конечном отрезке , где . Таким образом, можно рассмотреть функцию, зависящую от верхнего предела, как от переменной:

Если эта функция имеет предел при , то число называется значением несобственного интеграла первого рода:

а сам определенный интеграл называется сходящимся. Если же предела не существует, то интеграл называется расходящимся и не имеет никакого числового значения.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-26 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: