Преобразование операторов от одного представления к другому




 

Пусть оператор задан в координатном представлении и переводит функцию в функцию :

 

 

Разложим функции и в ряд по собственным функциям оператора . Спектр собственных значений этого оператора для определенности будем считать дискретным

 

:

Совокупность амплитуд есть волновая функция в -представлении, совокупность амплитуд - волновая функция в -представлении. Подставим разложение (3.3.2) и (3.3.3) в (3.3.1):

 

 

Умножим левую и правую части этого равенства на и проинтегрируем по всей области изменения независимых переменных. Знаки суммирования и интегрирования меняем местами. Поскольку собственные функции ортогональны и нормированы, т.е.


 

, имеем

 

Вводя обозначение

 

 

получаем

 

 

Если спектр оператора непрерывен, имеем аналогично

 

 

Таким образом, с помощью набора величин можно волновую функцию в - представлении, являющуюся совокупностью амплитуд, превратить в волновую функцию в том же представлении. Поэтому совокупность величин является оператором в - представлении. Его можно представить в виде матрицы:

 

Величины называют матричными элементами. В обозначениях Дирака

 

 

Итак, операторы квантовой механики могут быть представлены в матричной форме. Поскольку в квантовой механике применяются только эрмитовы операторы, удовлетворяющие условию, т о.

 

 

Такие матрицы называют самосопряженными или эрмитовыми.

Таким образом, каждой физической величине соответствует не один, а множество операторов. Вид оператора данной физической величины зависит от выбора независимых переменных. Зная оператор физической величины в одном представлении, можно найти его в других представлениях. Например, если известен вид оператора в -представлении, то для получения его в матричной форме в -представлении надо воспользоваться собственными функциями оператора в -представлении в соответствии с формулой (3.3.4). Свойства физической величины (эрмитовость ее оператора, спектр собственных значений, среднее значение и т.д.) не зависят от выбора представления. (Аналогия с принципом относительности Эйнштейна: законы природы инвариантны (неизменны) при переходе от одной инерциальной системы отчета к другой).

Пример. Найти матричные элементы оператора в его собственном представлении.

В этом случае в (3.3.4) – собственная функция оператора :


 

 

С помощью этого уравнения преобразуем выражение для матричного элемента (3.3.4):

 

 

Поскольку собственные функции ортогональны и нормированы, получаем: . Таким образом, в своем собственном представлении любой оператор в матричной форме является диагональной матрицей, диагональные элементы которой равны собственным значениям этого оператора:

 

 

Итак, чтобы найти собственные значения оператора, заданного в форме матрицы, нужно привести эту матрицу к диагональному виду.

Пример. Записать среднее значение физической величины, представляемой оператором , в матричной форме.

Пусть в выражении

 

 

волновая функция и оператор заданы в координатном представлении. Перейдем к - представлению. Воспользуемся разложением (3.3.2) функции в ряд по собственным функциям оператора . Подставляя в выражение для среднего значения и меняя местами знаки суммирования и интегрирования, получаем

 

 

Совокупность есть матрица с одним столбцом. Совокупность - сопряженная матрица с одной строкой. Поэтому (3.3.8) можно записать как произведение соответствующих матриц:

 

 

где - оператор в - представлении.

 

Вопросы для самопроверки

1. Что называют индексом состояния? индексом представления?

2. Как, зная волновую функцию системы в одном представлении, найти ее в другом представлении?

3. Как, зная вид оператора в одном представлении, найти его в другом представлении?

4. Определите понятие матричного элемента оператора.

5. Что представляет собой матричные элементы оператора в его собственном представлении?

6. Что такое вектор состояния, кэт-вектор, бра-вектор? Какая связь между и ?

7. Какая связь между вектором состояния системы и ее волновой функцией?

8. Записать в обозначениях Дирака волновую функцию системы в - представлении и в - представлении, если ее вектор состояния .

9. Изменяется ли среднее значение физической величины при переходе к другому представлению?

10. Записать в матричной форме (в - представлении) выражение для среднего значения величины, соответствующей оператору .

 

Упражнения

3.1 Найти операторы координаты и импульса в импульсном представлении.

Решение. Для простоты рассматриваем одномерное движение вдоль оси . В координатном представлении

 

, (см §2.7).

 

В импульсном (т.е. в своем собственном) представлении . Найдем оператор координаты.

Способ 1. Воспользуемся тем, что среднее значение физической величины не зависит от используемого представления:


 

(I)

 

В левой части равенства все величины даны в координатном представлении, в правой – в импульсном. Связь между волновыми функциями в координатном и импульсном представлениях определяется соотношением

 

,

 

Где

 

 

- собственная функция оператора в координатном представлении. Поэтому

 

(II)

 

Подставляем это выражение в левую часть равенства (I):

 

(III)

 

Множитель в подынтегральном выражении правой части равенства найдем из соотношения:


 

.

 

Получаем:

 

.

 

Пользуясь этим соотношением, преобразуем правую часть равенства (III):

 

(IV)

 

При интегрировании по получаем

 

,

 

так как и . (Состояние с бесконечно большим импульсом невозможно.) Учитывая этот результат, перепишем равенство (IV):

 

(V)

Так как

 

=

 

правую часть соотношения (V) можно переписать в виде

 

 

Используя свойство -функции (2.6.3) находим интеграл по :

 

 

Учитывая сделанные преобразования, переписываем равенство (V):

 

 

Сравнивая это выражении с соотношением (I) получаем

 

 

Способ 2. В матричной форме оператор координаты в импульсном представлении является бесконечной непрерывной матрицей с матричными элементами:

 


 

 

Здесь - собственная функция оператора импульса в координатном представлении

 

 

Подставляя значение функции в формулу для матричного элемента, получаем

 

 

Соотношение

 

 

показывает как оператор в матричной форме переводит одну функцию в импульсном представлении в другую также в импульсном представлении (См(3.3.6)). Подставляем в правую часть этого соотношения значение матричного элемента и интегрируем по частям:

 

 

Первое слагаемое в правой части равно нулю, поскольку импульс не может быть бесконечно большим. Второе слагаемое преобразовываем, используя свойство -функции (2.6.3):

 

 

Поэтому

 

 

Следовательно, координате в импульсном представлении соответствует дифференциальный оператор

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-12-28 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: