Какие проекты были связаны с развитием атомной энергетики?




Прежде всего, проект атомного теплоснабжения городов в зоне недостаточной обеспеченности доступным топливом. Был создан проект атомной теплоэлектроцентрали АСТ-500. Начато строительство этой АТЭЦ в Горьком (ныне Нижний Новгород). В числе городов, в которых планировалось вводить атомное теплоснабжение числились Воронеж, Одесса, Минск. Параллельно велись разработки малых АТЭЦ для обеспечения теплом и электричеством малых поселений Дальнего Востока и Севера. Речь о железнодорожных и плавучих АТЭЦ. А первая АТЭЦ с несколькими реакторами малой мощности прошла уже через опыт безаварийной эксплуатации на Билибинской АТЭЦ на Чукотке.

Был проект развития нефтепереработки на основе высокотемпературного газового реактора. На нефтеперерабатывающих заводах СССР при производстве каждых двух тонн нефтепродуктов сжигалась одна тонна нефти. Сейчас после множественных модернизаций коэффициент использования нефти доведен до 70-72%. На вылизанных до предела НПЗ западного мира коэффициент использования нефти доведен до 90-95% (если это не полуправда). Но для нашей страны с НПЗ, построенными преимущественно в 60-е, такой высокий коэффициент недостижим. Только за счет нового строительства, а оно весьма капиталоемкое.

Сейчас в России приблизительно половина нефти идет в переработку на НПЗ. И это все практически только на НПЗ, построенных в советское время. Сейчас Россией не достигнут еще советский уровень общего объема нефтепереработки. Таким образом, замена устаревших тепловых НПЗ атомными на их техническом уровне середины 80-х позволяла экономить каждую третью тонну перерабатываемой нефти, а по сопоставлению с современным техническим уровнем российских НПЗ - более, чем каждую четвертую, что выливается в 1/7 общей нефтедобычи. 70 млн. тонн нефти из современной нефтедобычи России можно было бы высвободить с помощью атомных НПЗ. Да еще и коэффициент использования энергии был бы выше. Проектирование шло на том самом уровне технического совершенства, который присущ западным НПЗ. Под первый атомный НПЗ уже готовилась площадка в Татарии. И был заключен договор о поставке высокотемпературного газового реактора из ФРГ.

Третий важный проект - плазменная металлургия. Речь идет о восстановлении металла из руды водородом в плазменных реакторах. Традиционная угольная металлургия требует 4 тонн угля для производства 1 тонны стали. Это гигантские объемы добычи и гигантские перевозки, учитывая географию наших рудных месторождений и месторождений угля. Проект плазменной металлургии делал их ненужными. Водород для плазменных реакторов мог спокойно вырабатываться электролизом воды за счет энергии небольшой АЭС, которую можно было держать в базовом, наиболее оптимальном режиме постоянной мощности. К середине 80-х построенные в годы индустриализации Магнитогорский, Нижнетагильский металлургические комбинаты уже дышали на ладан. Они морально устарели и физически износились. Их надо было чем-то заменять. Плазменная металлургия была адекватной заменой.

Плазменные реакторы были абсолютно реальной заменой. К перестройке все предварительные исследования уже были выполнены. Было выяснено, что рентабельное использование плазменных металлургических реакторов возможно, начиная с объемов производства 200 тысяч тонн в год, в то время, как доменный цикл обычной угольной металлургии становился рентабельным с 2 млн. т. На научном уровне все уже было сделано. Готовился крупномасштабный экономический эксперимент. Обратим внимание. 200 тысяч тонн металла как условие рентабельности означали возможность размещения металлургии практически в любом регионе, обслуживая его потребность в металле. При этом есть еще одна важная особенность. Плазменный реактор может работать с бедными рудами. Можно включать в экономику ранее не имевшие промышленной ценности малые и средние местные месторождения бедных руд. Металлургию можно было спускать на региональный уровень даже по сырью. 200 тысяч тонн - реалистичный объем и для микробиологического концентрирования железа в конкрециях. Колонии некоторых бактерий способны концентрировать отдельные, свойственные для этого вид бактерий, элементы. Болотная руда, на основе которой строилась металлургия средневековья, - результат именно такой природной микробиологической концентрации металла. Новое - хорошо забытое старое. На новом уровне. Возникает возможность не выискивать и разбирать гигантские природные месторождения, но управляемо концентрировать, возделывать нужное человеку сырье. Новый уклад жизни. И это не фантастика. Сейчас микробиологическое концентрирование применяется в золотодобыче. Можно концентрировать и рассеянный в воде уран. Но для железа, которое сегодня является главным металлом человеческой цивилизации, вопрос об объеме производства слишком серьезен.

Ныне, после смерти завлаба д.т.н. Цветковой занимавшейся вопросом плазменной металлургии лаборатории ИМЕТ РАН не существует. Автор, учившийся в аспирантуре ИМЕТ РАН в родственной Лаборатории лазерной металлургии, тем не менее застал и проф. Цветкова, которому сдавал вступительный экзамен по специальности, и этот забытый ныне проект. Он предлагался Европейскому Союзу для совместной реализации. Ответ: на выполнение такой программы был способен только Советский Союз. ЕС для этого слабоват.

Последний из известных автору крупных проектов - это транспорт на водородном топливе. Первый самолет с водородным двигателем уже летал. Водородное моторное топливо особо важно для краев, куда моторные топлива приходится завозить. На Чукотке накапливались гигантские кладбища бензиновых бочек. Везти назад их было крайне невыгодно. Легче выкинуть. АЭС, способная вырабатывать водород из воды в любом регионе, гарантирует самообеспечение моторным топливом.

Все программы перечеркнула Чернобыльская авария. Точнее, перечеркнул генсек ЦК КПСС М. С. Горбачев, воспользовавшись аварией как поводом. Конечно, остановить начатое и уже развернутое строительство АЭС в СССР было не просто. Силы, настаивавшие на дальнейшем развитии атомной энергетики, в нашей стране были достаточно мощными. Сама авария в том формате, в котором она состоялась, не привела к пугающе катастрофическим последствиям. Но зато строительство АЭС за вторую половину 80-х прекратилось в США и Германии.

6.

В нашей же стране в 1992 году президент Б. Н. Ельцин дал атомной энергетике зеленый свет. Тем не менее, борьба против нее не прекратилась. Она перешла в другие формы. В том числе тайные. Большая опасность подстерегала атомную энергетику со стороны строительного сектора.

Реактор является мощным источником гамма-излучения и нейтронов. Для того, чтобы погасить эти потоки, реактор одевают в так называемую радиационную защиту. Как показали эксперименты еще 50-х годов, приблизительно 2 метра обычного бетона оказываются достаточны для того, чтобы обеспечить радиационную безопасность реактора. Но 2 метра - это очень большая толщина. Внутри этих двух метров оказываются участки коммуникаций, к которым не подступишься. Резко возрастают габариты всего энергетического сооружения. Возрастает стоимость, трудоемкость. А где-то по условиям эксплуатации реактора просто невозможно защищать его такой толстой радиационной защитой, потому что требуется обслуживание оборудования, которое невозможно удалить от реактора.

Решение заключалось в использовании материалов с повышенной плотностью. Если обычный тяжелый бетон имеет плотность 2200-2300 кг/куб.м, то используемые в радиационной защите реакторов особо тяжелые бетоны имеют плотность 2900, 3350, 4100, 4400 кг/куб.м. На заре атомной эры высокая плотность бетонов РЗ достигалось использованием в составе бетона вместо щебня из обычных минеральных пород железных руд или подсыпкой в бетон стальной дроби или т.н. скрапа. Укладка подобных бетонов весьма трудоемка. Если бетон жидкий, то тяжелые руды или дробь пытаются утонуть. Получается либо перерасход металла и неправомерное утяжеление конструкции, опасное для нижестоящих конструкций, либо неравномерная плотность. Участки бетонной отливки, которые оказались обеднены металлическими или рудными заполнителями, - это радиационные свищи, делающие опасным обслуживание реактора. Поэтому особо тяжелые бетоны делали жесткими. Они не расползаются и тем более не текут. Их можно подавать к месту бетонирования только бадьями, а укладывать только лопатой да еще и со штыкованием - проталкиванием смеси через прутья арматуры. Жесткие бетоны необходимо постоянно вибрировать, буквально через несколько сантиметров укладки. Постоянно контролировать плотность уложенного бетона. В частности, в нашей стране для этого использовался специально разработанный изотопный датчик, который, впрочем, не был способен обеспечить необходимую точность измерений плотности. В ходе стройки укладку особо тяжелых бетонов курировал представитель разрабатывавшего бетон научного учреждения.

Но были и другие важные недостатки. На месторождениях руда имеет разное содержание железа от места к месту. Добывающие предприятия заранее планируют последовательность выемки руды с тем, чтобы смешивать бедные руды с богатыми и получать смесь с более-менее ровным содержанием приблизительно 50% железа. Иначе возникают трудности уже у металлургов. В бетоне радиационной защиты такое среднее уже не пройдет. Нужна руда с высоким и ровным содержанием железа около 70% - т.е. необходимо требовать лучшие руды, которые горнодобывающий комбинат не может отдавать без изменения планов выемки, иначе проседает качество его основной продукции.

Но и это не все. Химический состав примесей, которые могут оказаться в руде, меняется от места к месту даже в пределах одного карьера. И некоторые примеси могут быть совершенно недопустимы в бетоне, которому предстоит десятилетиями находиться под воздействием высоких температур и радиации. Например, окись магния. При повышенной температуре бетон с этой примесью рассыпается. Сульфиды и сульфаты под действием радиации образуют внутри бетона серную кислоту, способную разъедать арматуру конструкции. Опасными для радиационной защиты являются примеси щелочных металлов, минералы, которые меняют фазовый состав с изменением плотности. Это известно из стандарта США 1985 года. В СССР подобного комплексного исследования не проводили, соответствующие нормативы на допустимое содержание примесей не были выработаны. Научные силы, привлеченные к соответствующим работам, были не велики. В принципе сейчас можно было бы воспользоваться американскими нормативами, коль они уже выработаны. Но и нормативы тоже не сами по себе. Это целый комплекс методик измерений и контроля, соответствующий развитый парк контрольного и измерительного оборудования. И в любом случае стройки должны быть оснащены серьезной геолого-строительной лабораторией, осуществляющей непрерывный входной контроль качества поступающего бетонного сырья. К лету 2009 года ничего подобного в России не было. По большому счету новый этап атомно-энергетического строительства по части радиационной защиты мог оказаться обречен.

Но в СССР было найдено удивительно красивое решение. Вместо рудного щебня воспользовались окатышами горно-обогатительного комбината. Они имеют стабильный химический и гранулометрический состав, стабильную гарантированную плотность. Вместо песка применили окалину металлургического комбината. Получили раствор, весьма близкий по плотности к плотности окатышей. Окатыши в нем не тонут и не всплывают. А потому такой особо тяжелый бетон можно делать пластичным, подвижным. Можно возить в автобетоносмесителях, подавать через хоботы бетононасосов даже внутрь уже построенных корпусов. Можно сбрасывать с высоты несколько метров и укладывать так называемым гравитационным методом - без вибрирования.

По сравнению с особо тяжелыми бетонами зари атомной эры экономия живого труда составила 20 человеко-часов на каждом кубометре радиационной защиты. Отливка монолитной шахты реактора на Запорожской АЭС ускорила строительство энергоблока на 3 месяца. Указанные бетоны и их технологии были внедрены на строительстве 28 энергоблоков СССР и стран СЭВ. Международная группа ученых стран СЭВ в 1985-90 годах разработала и комплексный нормативный материал, регулирующий и применение бетонов радиационной защиты, и организацию бетонных работ на строительстве АЭС.

Сразу же после исчезновения СССР данный готовый, но еще не подписанный норматив забыли. Забыли про существование прогрессивных бетонов на окатышах и окалине, про прогрессивные технологии их применения. Во всяком случае, при строительстве двух атомных энергоблоков в Китае вернулись к бетонам с рудными заполнителями. Благо за качество строительства отвечала китайская сторона. Китай остался социалистическим. С соответствующей высокой дисциплиной труда. Ничего страшного не произошло.

Между тем в России даже из СНиП (строительные нормы и правила) еще советского периода (1987 года) были изъяты фразы, касающиеся особенностей подхода к работам с особо тяжелыми бетонами радиационной защиты. СНиПы устаревают, на смену им приходят новые. Но чтобы изменять текст старого СНиП? - И все-таки это произошло. Тихо и незаметно. Обнаружил странную подмену текста человек, который в свое время лично добивался включения в СНиП фраз про особенности работы с особо тяжелыми бетонами.

У инженера-строителя, таким образом, исчезла сама подсказка о том, что работать-то ему надо не с чем-то обычным. А бетон, укрывающий реактор, не сломаешь и не перестроишь. Он активирован потоками нейтронов.

Подобное не может быть объяснено ничем, кроме сознательного организованного вредительства. Преступления, совершаемого против атомной энергетики России.

Положение усугублялось тем, что в течение 90-х годов организации-разработчики бетонов радиационной защиты одна за другой исчезли. Один за другим уходили из жизни специалисты. На сегодняшний день в России остался последний живой специалист-разработчик бетонов радиационной защиты с опытом внедрения на стройках АЭС, да и тот на пенсии.

Если в современных условиях строить АЭС, а строительство таки возобновилось, то применение в радиационной защите особо тяжелых бетонов зари атомной эры чревато тем, что потерявшие понимание смысла работ, не имеющие над собой кураторов строители построят радиационную защиту так, что либо после пуска выяснится, недопустимость эксплуатации реакторов, либо у защиты может оказаться недопустимо короткий ресурс.

Строительство радиационной защиты - это чрезвычайно узкое место для российской атомной энергетики. Машиностроителей, создающих реакторное и сервисное оборудование, достаточно много. Строителей тоже. А вот на стыке реактора и стройки - пустота. Ни исследовательских лабораторий, ни специалистов, ни норм, из которых можно было бы почерпнуть информацию, как что укладывать, что контролировать по ходу стройки. Даже при приемке объектов радиационной защиты не на что ориентироваться.

И единственный тип бетонов радиационной защиты, который мог бы решить проблемы только потому, что он сам укладывается как надо, - затоптан в забвение.

В постсоветское время диверсия, нацеленная на недопущение развития атомной энергетики, как видим, продолжилась. Была найдена область, слабо обеспеченная кадрами и учреждениями. Почти незаметная. И именно в ней закладывалась мина замедленного действия. Действительно, планы правительственной программы АЭС-2006 предусматривали строительство 2-4 реакторов в год. А сама стройка занимает по нынешним временам до 6 лет. Относительно малые объемы укладываемых особо тяжелых бетонов всего-то около1500 кубометров на энергоблок, будучи неграмотно уложены, угрожают сделать бессмысленным труд и строителей реактора, и строителей собственно АЭС. И это выявилось бы очень не скоро. Это действительно мина, имевшая перспективу похоронить российскую атомную энергетику.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: