Силовое поле.
Силовым полем называется область, в каждой точку которой, на помещённую в неё материальную точку действует сила однозначно определённая по величине и направлению в любой момент времени.

Силовое поле определяется уравнениями:
.
Силовое поле называется не стационарным, если поле зависит явно от времени; и стационарным, если не зависит от времени t явно.
Будем рассматривать только стационарные силовые поля.

Стационарное силовое поле называется потенциальным, когда существует однозначная скалярная функция
, зависящая только от координат точки и такая, что проекция силы на декартовые оси координат равны соответствующим частным производным этой функции U:

Связь между силой и потенциальной энергией.
Каждой точке потенциального поля соответствует, с одной стороны, некоторое значение вектора силы
, действующей на тело, и, с другой стороны, некоторое значение потенциальной энергии
. Следовательно, между силой и потенциальной энергией должна существовать определенная связь.

Для установления этой связи вычислим элементарную работу
, совершаемую силами поля при малом перемещении
тела, происходящем вдоль произвольно выбранного направления в пространстве, которое обозначим буквой
. Эта работа равна

где
- проекция силы
на направление
.
Поскольку в данном случае работа совершается за счет запаса потенциальной энергии
, она равна убыли потенциальной энергии
на отрезке оси
:

Из двух последних выражений получаем

Откуда

Последнее выражение дает среднее значение
на отрезке
. Чтобы
получить значение
в точке нужно произвести предельный переход:

Так как
может изменяться не только при перемещении вдоль оси
, но также и при перемещениях вдоль других направлений, предел в этой формул представляет робой так называемую частную производную от
по
:

Это соотношение справедливо для любого направления в пространстве, в частности и для направлений декартовых координатных осей х, у, z:

Эта формула определяет проекции вектора силы на координатные оси. Если известны эти проекции, оказывается определенным и сам вектор силы:

в математике вектор
,
где а - скалярная функция х, у, z, называется градиентом этого скаляра обозначается символом
. Следовательно сила равна градиенту потенциальной энергии, взятого с обратным знаком
|
Движение в центральном поле.
Поле, в котором потенциальная энергия зависит только от расстояния r до определенной неподвижной точки, называют центральным[1].
Сила
, (2)
действующая на частицу, по абсолютной величине зависит при этом тоже только от
и направлена в каждой точке вдоль радиус-вектора.
При движении в центральном поле сохраняется момент количества движения системы относительно центра поля. Для одной частицы это есть
. (3)
Поскольку векторы
и
взаимно перпендикулярны, постоянство
означает, что при движении частицы ее радиус-вектор все время остается в одной плоскости – плоскости, перпендикулярной
. Таким образом, траектория движения частицы в центральном поле лежит целиком в одной плоскости.