Функция: область определения и область значений функций
Функция-это модель. Определим X, как множество значений независимой переменной // независимая -значит любая.
Функция это правило, с помощью которого по каждому значению независимой переменной из множества X можно найти единственное значение зависимой переменной. // т.е. для каждого х есть один у.
Из определения следует, что существует два понятия- независимая переменная (которую обозначаем х и она может принимать любые значения) и зависимая переменная (которую обозначаем y или f(х) и она высчитывается из функции, когда мы подставляем х).
НАПРИМЕР у=5+х
1. Независимая -это х, значит берем любое значение, пусть х=3
2. а теперь вычисляем у, значит у=5+х=5+3=8. (у зависима от х, потому что какой х подставим, такой у и получим)
Говорят, что переменная y функционально зависит от переменной x и обозначается это следующим образом: y = f (x).
НАПРИМЕР.
1.у=1/х. (наз.гипербола)
2. у=х^2. (наз. парабола)
3.у=3х+7. (наз. прямая)
4. у= √ х. (наз. ветвь параболы)
Независимая переменная (кот. мы обозначаем х) имеет название аргумент функции.
Область определения функции
Множество всех значений, которые принимает аргумент функции, называется областью определения функции и обозначается D (f) или D (y).
Рассмотрим D (у) для 1.,2.,3.,4.
1. D (у)= (∞; 0) и (0;+∞) //всё множество действительных чисел, кроме нуля.
2. D (у)= (∞; +∞)//всё мн-во действит.чисел
3. D (у)= (∞; +∞)//всё мн-во действит.чисел
4. D (у)= [0; +∞)// мн-во неотрицат.чисел
Зависимая переменная (кот. мы обозначаем у) имеет название значение функции.
Область значения функции
Множество всех значений, которые может принять зависимая переменная, называется областью значения функции и обозначается E (f) или E (y).
|
Рассмотрим Е (у) для 1.,2.,3.,4.
1. Е (у)= (∞; 0) и (0;+∞) //всё множество действительных чисел, кроме нуля.
2. Е (у)= [0; +∞)// мн-во неотрицат.чисел
3. Е (у)=(∞; +∞)//всё мн-во действит.чисел
4. Е (у)= [0; +∞)// мн-во неотрицат.чисел
Рассмотрим примеры подробнее
1) Постановка задачи. Найти функции у= 4х/(3+х)
Решение.
1. Найдем D (у)//т.е. какие значения может принимать х. для этого найдем ОДЗ(область допустимых значений дроби)
3+х≠0
х≠-3
значит D (у) данной функции (∞; 3) и (3;+∞)// всё множество действительных чисел, кроме 3.
2. Найдем Е (у)//т.е. какие значения может принимать у, при всех возможных х
решаем уравнение вида 4х/(3+х)=А, где А є Е (у)
(3+х)А=4х
3А=4х-хА
3А=х(4-А)
х=3А/(4-А)
значит Е (у) данной функции (∞; 4) и (4;+∞)// всё множество действительных чисел, кроме 4.
2) Постановка задачи. Найти D (у)и Е (у) функции, изображенной на графике
Область определения(значения х) смотрим по оси х- это промежуток [ 4; 7],
Областью значения(значения у) смотрим по оси у- это промежуток [ 4; 4].
Свойства функции
Для понимая данной темы, рассмотрим функцию, изображенную на графике // Покажем, как график функции позволяет определить ее свойства.
Разбираем свойства функции на примере
Областью определения функции явл. промежуток [ 3,5; 5,5].
Областью значений функции явл. промежуток [ 1; 3].
1. При x = -3, x =- 1, x = 1,5, х=4,5 значение функции равно нулю.
Значение аргумента, при котором значение функции равно нулю, называют нулем функции.
//т.е. для данной функции числа -3;-1;1,5; 4,5 являются нулями.
|
2. На промежутках [ 4,5; 3) и (1; 1,5) и (4,5;5,5] график функции f расположен над осью абсцисс, а на промежутках (-3; -1) и (1,5; 4,5) под осью абсцисс, это объясняется так -на промежутках [ 4,5; 3) и (1; 1,5) и (4,5;5,5] функция принимает положительные значения, а на промежутках (-3; -1) и (1,5; 4,5) отрицательные.
Каждый из указанных промежутков (там где функция принимает значения одного и того же знака) называют промежутком знакопостоянства функции f.//т.е. например, если взять промежуток (0; 3), то он не является промежутком знакопостоянства данной функции.
В математике принято при поиске промежутков знакопостоянства функции указывать промежутки максимальной длины. //Т.е. промежуток (2; 3) является промежутком знакопостоянства функции f, но в ответ следует включить промежуток [ 4,5; 3), содержащий промежуток (2; 3).
3. Если перемещаться по оси абсцисс от 4,5 до 2, то можно заметить, что график функции идет вниз, то есть значения функции уменьшаются. //В математике принято говорить, что на промежутке [ 4,5; 2] функция убывает.
С увеличением x от 2 до 0 график функции идет вверх, т.е. значения функции увеличиваются. //В математике принято говорить, что на промежутке [ 2; 0] функция возрастает.
Функцию f называют возрастающей на некотором промежутке, если для любых двух значений аргумента x1 и x2 из этого промежутка таких, что x2 > x1, выполняется неравенство f (x2) > f (x1). // или Функцию называют возрастающей на некотором промежутке, если для любых значений аргумента из этого промежутка большему значению аргумента соответствует большее значение функции.//т.е. чем больше х, тем больше у.
Функцию f называют убывающей на некотором промежутке, если для любых двух значений аргумента x1 и x2 из этого промежутка таких, что x2 > x1, выполняется неравенство f(x2)убывающей на некотором промежутке, если для любых значений аргумента из этого промежутка большему значению аргумента соответствует меньшее значение функции. //т.е. чем больше х, тем меньше у.
|
Если функция возрастает на всей области определения, то ее называют возрастающей.
Если функция убывает на всей области определения, то ее называют убывающей.
Пример 1. график возрастающей и убывающей функций соотвественно.
Пример 2.
Определить явл. ли линейная функция f (x) = 3x + 5 возрастающей или убывающей?
Доказательство. Воспрользуемся определениями. Пусть х1 и x2 произвольные значения аргумента, причем x1 < x2., например х1=1, х2=7
Получаем при подстановке
f (x1) f (x2) = (3*х1 + 5) (3*x2 + 5) = 3*x1+ 5 3*x2- 5 = 3*х1-3*х2=3*1-3*7=3-21=-19<0
Получаем, что f (x1) f (x2) < 0,а значит f (x1) < f (x2) т.е.данная функция является возрастающей.// т.е. чем больше х, тем больше у.