Интегральная кривая нагрузки




Из хронологического графика может быть получен график продолжительности и интегральная кривая нагрузки. Интегральной кривой суточного графика нагрузки называется зависимость суточной выработки энергии от мощности. Эта зависимость выражается формулой: или конкретнее .Обратите внимание при построении ИКН ось ординат перевернута и направлена сверху вниз.

Рис. 4 Интегральная кривая нагрузки

Интегральная кривая характеризует зависимость прироста суточной выработки энергии D Э от прироста нагрузки энергосистемы D Р и строится методом графического интегрирования суточной кривой продолжительности нагрузки или непосредственным подсчетом соответствующих элементарных выработок энергии по площади суточного (хронологического) графика нагрузки энергосистемы.

Рассмотрим порядок построения ИКН одним из методов.

1. Переменная часть суточного графика нагрузки системы делится на несколько (например, 10) равных частей, характеризующих элементарные приращения нагрузки D Р. Каждому приращению нагрузки D Р соответствует элементарное приращение суточной выработки D Э, количественно равное площади элемента графика нагрузки между двумя горизонталями, ограничивающими элементарное приращение нагрузки D Р.

2. Подсчитываются элементарные приращения суточной выработки электроэнергии D Э (по площади соответствующих элементов графика нагрузки по графику, либо табличным способом).

3. Выбираем масштаб по оси абсцисс: предельная суточная выработка энергии системой – это средняя мощность умноженная на 24 часа.

4. На горизонтальной оси Э справа налево откладываются последовательно элементарные приращения суточной выработки D Э1, D Э2 и т.д. в линейном масштабе, выбранном в п.3

5. Каждая точка интегральной кривой, отвечающая какому-либо элементарному приросту нагрузки (например, D Р1) и выработки (например, D Э1), определяется пересечением горизонтали, ограничивающий элементарный прирост нагрузки, с вертикалью, проведенной через точку горизонтальной оси координат (оси Э), ограничивающую соответствующую величину приращения выработки.

Применение ИКН

Построенная кривая может быть использована и для расчета Эс при задании Nc от 0 до Р макс.

Пусть, например, задана максимальная рабочая мощность l -й ГЭС Nl и ее суточная выработка Э/. Для определенности пусть Эl = Э2Э1, a Nl = N.2—N1. Тогда решением задачи будет зона графика нагрузки, размещенная между горизонтальными линиями, соответствующими пиковым мощностям N2 и N1 на рисунке 5. Практически это будет означать, что прямоугольный треугольник abc с катетами (Эl, Nl) совместится с треугольником a'b'c' на интегральной кривой.

Рис. 5 Применение ИКН

Наиболее широко интегральная кривая нагрузка используется при проектировании ГЭС и ГАЭС, причем отличие полученного по ней режима ГЭС или ГАЭС от оптимального будет тем меньше, чем больше ограничений накладывается на их режим и чем меньше удельный вес этих станций в энергосистеме.

Рассмотренный способ приближенного расчета суточного режима ГЭС весьма прост и нагляден. Однако он применим только при независимости режимов разных ТЭС и ГЭС друг от друга. В противном случае возможно получение ситуации, показанной на рисунке 6а. Здесь треугольники abc и def для двух ГЭС (/-й и (/ + 1)-ой) взаимно перекрывают друг друга на интегральной кривой нагрузки. В подобном случае требуется принятие дополнительных условий для определения режимов каждой ГЭС.

Например, для рис. 6б принято условие максимального участия двух ГЭС в покрытии пиковой части графика нагрузки. В связи с этим (/+1)-я ГЭС, как обладающая большими возможностями регулирования, будет работать как в пиковой, так и в базовой части графика нагрузки системы.

Рис. 6

Точно так же можно определять и режимы группы ГЭС при заданном порядке их размещения в графике нагрузки системы и известных максимальных рабочих мощностях.

Следует предостеречь от характерной ошибки в расчетах режимов группы ГЭС, для каждой из которых заданы Э и N. Она возникает, если совместный режим этих станций определяют по общему треугольнику с катетами, равными сумме всех Э и N. Подобный прием можно применять либо только для базовой части графика нагрузки системы, либо при априорной уверенности в том, что все частные треугольники с катетами Э и N размещаются в зоне существования общего независимо друг от друга.

Исходные данные по энергосистеме для водно-энергетических расчетов:

- район, в котором расположена энергосистема;

- годовой максимум нагрузки Рсmax энергосистемы;

- число часов использования годового максимума нагрузки Tc;

- укрупненная структура генерирующих мощностей тепловых электростанций;

- установленная и гарантированная мощности существующих ГЭС.

Вопрос №47

Основные методы расчета электрических нагрузок

- По номинальной мощности и коэффициенту использования;

- По номинальной мощности и коэффициенту спроса;

- По средней мощности и расчетному коэффициенту;

- По средней мощности и отклонению расчетной нагрузки от средней;

- По средней мощности и коэффициенту формы графика нагрузки.

Применение того или иного метода определяется допустимой погрешностью расчетов и наличия исходных данных.

По номинальной мощности и коэффициенту использования

Метод определения расчетных нагрузок по номинальной мощности и коэффициенту использования применяется, как правило, для индивидуальных ЭП напряжением до 1 кВ, работающих в длительном режиме (ПВ=1).

По данному методу расчетные нагрузки принимаются равными средним значениям нагрузок за наиболее загруженную смену:

- расчетная активная мощность, потребляемая одним ЭП, при наличии графика нагрузки по активной мощности

, (5.1)

где – расчетная активная мощность, кВт; - среднее значение активной мощности ЭП за наиболее загруженную смену, кВт;

- расчетная активная мощность, потребляемая одним ЭП, при отсутствии графика нагрузки по активной мощности

, (5.2)

где - коэффициент использования активной мощности электроприемником за рассматриваемый промежуток времени (технологический параметр), о.е.; - номинальная активная мощность ЭП, кВт;

- расчетная реактивная мощность, потребляемая одним ЭП, при наличии графика нагрузки по реактивной мощности

, (5.3)

где – расчетная реактивная мощность, кВ·Ар; - среднее значение реактивной мощности ЭП за наиболее загруженную смену, кВ·Ар;

- расчетная реактивная мощность, потребляемая одним ЭП, при отсутствии графика нагрузки по реактивной мощности

, (5.4)

где - коэффициент использования реактивной мощности ЭП за рассматриваемый промежуток времени (технологический параметр), о.е.;

- номинальная реактивная мощность ЭП, кВт; tg - номинальное значение коэффициента реактивной мощности, соответствующий cos ЭП;

- расчетная полная мощность, потребляемая одним ЭП

, (5.5)

где - расчетное значение полной мощности ЭП, кВ·А;

- расчетное значение тока ЭП

, (5.6)

где – расчетный ток ЭП, А; – напряжение питания ЭП, кВ.

По данному методу допускается определение расчетных нагрузок группы ЭП напряжением до 1 кВ, связанных технологическим процессом, (например, многодвигательные приводы), а их число, как правило, не более трех-четырех. Режим работы электроприемников данной группы должен быть приведен к длительному режиму (ПВ=1).

Расчетные нагрузки группы ЭП, определяемые по данному методу:

- расчетная активная мощность, потребляемая группой ЭП, при наличии группового графика узла нагрузки по активной мощности

, (5.7)

где - расчетная активная мощность, потребляемая группой ЭП, кВт;

- средняя активная мощность, потребляемая группой ЭП, за наиболее загруженную смену, кВт;

- расчетная активная мощность, потребляемая группой ЭП, при отсутствии группового графика узла нагрузки по активной мощности

, (5.8)

где - коэффициент использования по активной мощности индивидуального ЭП, входящего в группу; n – число ЭП в группе;

- расчетная реактивная мощность, потребляемая группой ЭП, при наличии группового графика узла нагрузки по реактивной мощности

, (5.9)

где - расчетная реактивная мощность группы ЭП, кВ·Ар; - среднее значение реактивной мощности группы ЭП, кВ·Ар;

- расчетная реактивная мощность, потребляемая группой ЭП, при отсутствии группового графика узла нагрузки по реактивной мощности

или , (5.10)

где - коэффициент использования по реактивной мощности индивидуального ЭП, входящего в группу; - средневзвешенный коэффициент реактивной мощности, соответствующий средневзвешенному значению данной группы ЭП;

- расчетная полная мощность, потребляемая группой ЭП

(5.11)

где - расчетная полная мощность узла нагрузки, кВ·А.

- Расчетное значение тока группы ЭП:

(5.12)

где Iр – суммарный расчетный узла нагрузки, А; Uн – напряжение питания узла нагрузки, кВ.

По номинальной мощности и коэффициенту спроса

Метод определения расчетных нагрузок по номинально мощности и коэффициенту спроса применяется, как правило, для группы ЭП, работающих в длительном режиме (ПВ=1). Данный метод наиболее прост и широко применяется при разработке технического задания на проектирование.

Для определения расчетных нагрузок по этому методу необходимо знать номинальную мощность группы приемников (производства, цеха и т.п.), коэффициент спроса данной группы ЭП и значение коэффициента мощности данной группы.

Групповые графики нагрузок подразделений предприятия, как правило, не приводятся, поэтому значения и принимаются как средневзвешенные значения группы ЭП данного подразделения по справочной литературе.

Расчетные нагрузки по данному методу определяются по следующим выражениям:

- активная расчетная мощность

, (5.13)

где - расчетное значение активной мощности узла нагрузки (цеха и т.п.), кВт; - средневзвешенное значение коэффициента спроса группы ЭП подразделения предприятия, о.е.;

- расчетная реактивная мощность

, (5.14)

где - расчетное значение реактивной мощности узла нагрузки (цеха и т.п.), кВт; - значение коэффициента реактивной мощности, соответствующего средневзвешенному значению группы ЭП данного подразделения;

- полная расчетная мощность

, (5.15)

где - полная расчетная мощность группы ЭП данного подразделения, кВ·А;

- расчетное значение тока

(5.16)

где - расчетный ток, А; – напряжение питания узла нагрузки, кВ

Расчетные нагрузки, определенные данным методом необходимы для выбора: сечения линий электропередачи, питающих узел нагрузки; силовых пунктов и трансформаторов; коммутационных и защитных аппаратов.

По средней мощности и расчетному коэффициенту

При наличии данных о числе ЭП, их мощности и режимах их работы расчет силовых нагрузок до 1 кВ рекомендуется проводить по средней мощности (Pc) и расчетному коэффициенту (Кр). Расчетный коэффициент определяется по упорядоченным диаграммам. Поэтому данный метод носит название - метод упорядоченных диаграмм.

Для расчета нагрузок необходимы исходные данные по каждому ЭП: количество и номинальная мощность ЭП (рн); коэффициент использования по активной мощности (kи.а); коэффициент активной мощности (cos ) и режим работы. При различных режимах работы ЭП, их необходимо привести к длительному режиму (ПВ=1).

Для определения расчетной мощности узла нагрузки по методу упорядоченных диаграмм все электроприемники разбиваются на подгруппы с учетом их подключения к узлу питания (силовой пункт, щит, сборка и т.п.). Необходимо отметить, что при формировании подгруппы, резервные ЭП не учитываются [3].

По сформированным подгруппам ЭП определяются эффективное число электроприемников и средневзвешенный коэффициент использования данной подгруппы.

Эффективное число электроприемников – это такое число однородных по режиму работы электроприемников одинаковой мощности, которое обуславливает те же значения расчетной нагрузки, что и группа электроприемников с разными мощностями и различными режимами работы.

- Величина эффективного числа электроприемников подгруппы () определяется по формуле

, (5.17)

где - номинальная активная мощность отдельного ЭП, входящего в состав подгруппы, кВт; - число ЭП в подгруппе.

При значительном числе ЭП в подгруппе (магистральные шинопроводы, шины цеховых ТП, в целом по цеху) допускается эффективное число электроприемников подгруппы определять по упрощенному выражению

, (5.18)

где - номинальная активная мощность наиболее мощного ЭП в подгруппе, кВт.

Полученное по указанной формуле значение эффективного числа электроприемников подгруппы округляется до ближайшего меньшего целого числа. Допускается принимать значение эффективного числа электроприемников равным действительному числу электроприемников в подгруппе при условии, что отношение номинальной активной мощности наиболее мощного ЭП () к номинальной мощности наименее мощного ЭП () менее трех.

- Средневзвешенный коэффициент использования для подгруппы (Ки) определяется по выражению

. (5.19)

Определение расчетных нагрузок по данному методу сводится к расчету значений активной, реактивной, полной мощностей и полного тока, рассматриваемого узла нагрузки.

- Активная расчетная мощность группы электроприемников, подключенных к узлу питания напряжением до 1 кВ определяется по выражениям

, (5.20)

где - активная расчетная мощность узла нагрузки, кВт; - расчетный коэффициент подгруппы, определяемый как Кр=f(nэ; Ки), о.е.;

–номинальная и средняя мощности ЭП, входящих в подгруппу, кВт; - коэффициент использования индивидуального ЭП в подгруппе, о.е.; – активная суммарная мощность ЭП, входящих в подгруппу, кВт;

- средневзвешенный коэффициент использования по активной мощности для ЭП входящих в подгруппу, о.е.; – число ЭП в подгруппе.

В случае если расчетная мощность, определенная по выражению (5.20), окажется меньше номинальной мощности наиболее мощного ЭП в подгруппе, следует принять расчетную мощность данной подгруппы равной номинальной мощности наиболее мощного ЭП.

Расчетный коэффициент определяется в зависимости от средневзвешенного коэффициента использования по активной мощности для подгруппы и эффективного числа электроприемников подгруппы. Значение расчетного коэффициента определяется по кривым этой зависимости или по таблицам с учетом постоянной времени нагрева сети, для которой рассчитываются электрические нагрузки.

Более точное значение расчетного коэффициента определяется по кривым зависимости , а также при nэ 4 (см. рисунок 5.1).

Для сетей напряжением до 1 кВ, питающих силовые пункты, щиты, распределительные шинопроводы, постоянная времени нагрева принята равной 10 минутам (Т0=10 мин.). В данном случае, расчетный коэффициент определяется по таблице 5.1.

Для магистральных шинопроводов и шин НН цеховых ТП постоянная времени нагрева принята равной 2,5 часа (Т0=2,5 ч.). В данном случае расчетный коэффициент определяется по таблице 5.2.

Рисунок 5.1 Кривые коэффициентов расчетной нагрузки для различны коэффициентов использования в зависимости от

Таблица 5.1

Значения коэффициентов расчетной нагрузки

для питающих сетей напряжением до 1 кВ

Коэффициент использования
0,1 0,15 0,2 0,3 0,4 0,5 0,6 0,7 0,8
  8,00 6,22 4,05 3,24 2,84 2,64 2,49 2,37 2,27 2,18 2,11 2,04 1,99 1,94 1,89 1,85 1,81 1,78 1,75 1,72 1,6 1,51 1,44 1,4 1,35 1,3 1,25 1,2 1,16 5,33 4,33 2,89 2,35 2,09 1,96 1,86 1,78 1,71 1,65 1,61 1,56 1,52 1,49 1,46 1,43 1,41 1,39 1,36 1,35 1,27 1,21 1,26 1,13 1,1 1,07 1,03 1,0 1,0 4,00 3,39 2,31 1,91 1,72 1,62 1,54 1,48 1,43 1,39 1,35 1,32 1,29 1,27 1,25 1,23 1,21 1,19 1,17 1,16 1,1 1,05 1,0 1,0 1,0 1,0 1,0 1,0 1,0 2,67 2,45 1,74 1,47 1,35 1,28 1,23 1,19 1,16 1,13 1,1 1,08 1,06 1,05 1,03 1,02 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 2,00 1,98 1,45 1,25 1,16 1,14 1,12 1,1 1,09 1,07 1,06 1,05 1,04 1,02 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,6 1,6 1,34 1,21 1,16 1,13 1,1 1,08 1,07 1,05 1,04 1,03 1,01 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,33 1,33 1,22 1,12 1,08 1,06 1,04 1,02 1,01 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,14 1,14 1,14 1,06 1,03 1,01 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

Таблица 5.2

Значения коэффициентов на шинах НН цеховых трансформаторов

и для магистральных шинопроводов напряжением до 1 кВ

Коэффициент использования
0,1 0,15 0,2 0,3 0,4 0,5 0,6 0,7 и более
6 - 8 9 - 10 10 – 25 25 -50 Более50 8,00 5,01 2,94 2,28 1,31 1,2 1,1 0,8 0,75 0,65 5,33 3,44 2,17 1,73 1,12 1,0 0,97 0,8 0,75 0,65 4,00 2,69 1,8 1,46 1,02 0,96 0,91 0,8 0,75 0,65 2,67 1,9 1,42 1,19 1,0 0,95 0,9 0,85 0,75 0,7 2,00 1,52 1,23 1,06 0,98 0,94 0,9 0,85 0,75 0,7 1,6 1,24 1,14 1,04 0,96 0,93 0,9 0,85 0,8 0,75 1,33 1,11 1,08 1,0 0,94 0,92 0,9 0,9 0,85 0,8 1,14 1,0 1,0 0,97 0,93 0,91 0,9 0,9 0,85 0,8

- Расчетная реактивная мощность узла нагрузки по этому методу определяется по формулам:

- при nэ 10 ; (5.21)

- при nэ>10 , (5.22)

где - расчетная реактивная мощность, кВ·Ар; - коэффициент реактивной мощности, соответствующий средневзвешенному значению для ЭП входящего в данную группу.

- Полная расчетная мощность узла нагрузки

, (5.23)

где - полная расчетная мощность, кВ·А.

- Расчетный ток узла нагрузки

, (5.24)

где - расчетный ток, А; – номинальное напряжение узла питания, кВ.

После определения расчетных нагрузок подгрупп ЭП по узлам питания (силовой пункт, щит, сборка и т.п.) рассчитывается нагрузка всего подразделения (цеха, корпуса и т.п.). Подразделение рассматривается как центр питания всех подгрупп ЭП, а расчетные нагрузки подгрупп ЭП составляют группу нагрузок всего подразделения. Допускается определять по упрощенной формуле (5.18). Расчет нагрузок подразделения в целом производится аналогично, как и для подгрупп ЭП. Но в формулах (5.19 и 5.20) вместо мощностей и коэффициентов, индивидуальных ЭП необходимо подставлять мощности и коэффициенты, рассчитанные для подгруппы ЭП. При расчете суммарной нагрузки подразделения в целом необходимо учитывать осветительную нагрузку всего подразделения (цеха) (см. подраздел 5.5)

По средней мощности и отклонению расчетной нагрузки от средней

Поскольку групповая нагрузка представляет собой систему независимых случайных нагрузок отдельных электроприемников, то при большом их числе групповая нагрузка подчиняется нормальному закону распределения случайных величин. Данный метод расчета – статистический метод расчета нагрузок.

По этому методу расчетную нагрузку группы приемников определяют двумя интегральными показателями: генеральной средней нагрузкой (Pс) и генеральным среднеквадратичным отклонением () из уравнения:

, (5.25)

где статический коэффициент, зависящий от закона распределения и принятой вероятности превышения по графики нагрузки от уровня ;

- среднеквадратичным отклонением для принятого интервала осреднения.

Среднеквадратичное отклонение для группового графика определяют по формуле:

, (5.26)

где - активная среднеквадратичная мощность, кВт.

Статистический метод позволяет определять расчетную нагрузку с любой принятой вероятностью ее появления. В практических расчетах вполне достаточно принять вероятность превышения расчетной нагрузки от средней, на , что соответствует тогда:

(5.27)

Применение этого метода целесообразно для определения нагрузок по отдельным группам и узлам СЭС при наличии результатов анализа действующих электроустановок напряжением до 1 кВ.

Расчетные значения полной мощности и тока по данному методу для группы ЭП определяются по известным формулам.

По средней мощности и коэффициенту формы графика

В данном методе расчетную нагрузку группы ЭП принимают равной их среднеквадратичной. Метод применим для расчета нагрузок группы ЭП, когда число приемников в группе достаточно велико, и их режим работы разнообразен.

Данный метод может применяться для определения расчетных нагрузок цеховых шинопроводов, на шинах низшего напряжения цеховых трансформаторных подстанций, на шинах РУ напряжением 6; 10 кВ, когда значения коэффициента формы графика () достаточно стабильны.

По данному методу расчетные нагрузки группы электроприемников определяют по формулам:

- активная мощность

, (5.28)

где - расчетное значение активной мощности, кВт; - коэффициент формы графика по активной мощности; - расчетное значение средней мощность группы ЭП за наиболее загруженную смену, кВт;

- реактивная мощность

, (5.29)

где - расчетное значение реактивной мощности, кВ·Ар; - коэффициент реактивной мощности, соответствующий средневзвешенному узла нагрузки;

- полная мощность

(5.30)

где - расчетное значение полной мощности, кВ·А;

- расчетный ток

(5.31)

где - расчетное значение тока узла нагрузки, А; – напряжение узла питания нагрузки, кВ.

Значения коэффициента формы графика достаточно стабильны, если производительность (и, как следствие, нагрузка) завода или цеха примерно постоянна. При проектировании значение коэффициента может быть принято по опытным данным аналогичного действующего предприятия. При отсутствии данных можно принимать Кф.а. = 1,1…1,2.

Все рассмотренные методы определения расчетных нагрузок применяются при расчетах симметричных трехфазных нагрузок.

5.2 Вспомогательные методы расчета электрических нагрузок

К вспомогательным методам относятся методы определения расчетных электрических нагрузок по удельным показателям:

- метод расчета по удельному расходу электроэнергии на единицу продукции за определенный период времени;

- метод расчета по удельной мощности на единицу производственной площади.

По удельному расходу электроэнергии на единицу продукции

Для потребителей электрической энергии с неизменной или мало изменяющейся во времени нагрузкой, расчетная нагрузка совпадает со средней нагрузкой за наиболее загруженную смену. В данном случае расчетное значение нагрузок может быть определено по удельному расходу электрической энергии на единицу продукции при заданном объеме выпуска за определенный период времени (например, за наиболее загруженную смену, месяц, год).

Значение активной расчетной мощности за наиболее загруженную смену

, (5.32)

где - среднее значение потребляемой активной мощности за наиболее загруженную смену, кВт; – удельный расход активной электроэнергии на единицу продукции за наиболее загруженную смену, кВт×ч; – количество продукции, выпускаемой за смену (шт., тонна); – продолжительность наиболее загруженной смены, ч.

Остальные показатели расчетных нагрузок (Qр; Sp; и Ip) по данному методу определяются по аналогии с предыдущими методами расчета электрических нагрузок.

Удельный расход электроэнергии на единицу продукции ориентировочно можно принять по статистическим данным действующих предприятий с аналогичным технологическим процессом.

По удельной мощности на единицу производственной площади

Метод определения расчетной нагрузки по удельной мощности на единицу производственной площади применяется при проектировании сетей, которые характеризуются большим количеством электроприемников малой и средней мощности, равномерно распределенных по площади производственного помещения.

Расчетная нагрузка по данному методу определяется по номинальной мощности и коэффициенту спроса, т.к. количество электроприемников велико, а исходные данные по отдельным электроприемникам, как правило, отсутствуют.

Активная расчетная мощность определяется по выражению

, (5.33)

где - расчетное значение активной мощности для группы ЭП, расположенных на данной территории, кВт; - средневзвешенный коэффициент спроса группы ЭП, для которых определяется расчетное значение мощности; - номинальная суммарная активная мощность группы электроприемников, расположенных на данной территории, кВт;

При отсутствии перечня оборудования, расположенного на данной территории, номинальная мощность группы электроприемников по данному методу определяется по формуле

, (5.34)

где - активная номинальная мощность группы электроприемников, кВт;

–удельная мощность на 1 м2 производственной мощности, кВт/м2;

- площадь, на которой размещена группа приемников, м2.

Удельную мощность нагрузки определяют по статистическим данным или справочной литературе для однородных производств. Её значение зависит от многих факторов.

Остальные показатели расчетных нагрузок (Qр; Sp; и Ip) по данному методу определяются по аналогии с предыдущими методами расчета электрических нагрузок.

Метод применим для ориентировочных расчетов, однако получил широкое применение при расчете мощности осветительных нагрузок отдельных корпусов подразделений предприятия, т.к. осветительная нагрузка равномерно распределена по площади подразделения.

5.3 Расчетные нагрузки однофазных электроприемников

На промышленных предприятиях наряду с трехфазными ЭП имеют место стационарные и передвижные ЭП однофазного тока, подключаемые на фазное или линейное напряжение.

При включении однофазного электроприемника на фазное напряжение он учитывается как эквивалентный трехфазный электроприемник с номинальной мощностью.

- Активная эквивалентная номинальная мощность

, (5.35)

где - активная эквивалентная номинальная мощность, кВт; - активная номинальная мощность однофазного электроприемника, кВт.

- Эквивалентная номинальная реактивная мощность

, (5.36)

где - эквивалентная номинальная реактивная мощность, кВ·Ар; - активная номинальная мощность однофазного электроприемника, кВ·Ар.

При включении однофазного электроприемника на линейное напряжение он учитывается как эквивалентный трехфазный электроприемник с номинальной мощностью.

- Активная эквивалентная номинальная мощность

, (5.37)

где - активная эквивалентная номинальная мощность, кВт; - активная номинальная мощность однофазного электроприемника, кВт.

- Эквивалентная номинальная реактивная мощность

, (5.38)

где - эквивалентная номинальная реактивная мощность, кВ·Ар; - активная номинальная мощность однофазного электроприемника, кВ·Ар.

Номинальные значения полной мощности и тока однофазного электроприемника определяются по известным формулам.

При наличии группы однофазных ЭП, которые распределены по фазам с неравномерностью до 15 % по отношению к общей мощности ЭП в группе. В данном случае они могут быть учтены в расчетах как эквивалентная группа трехфазных ЭП с той же суммарной номинальной мощностью.

В случае превышения указанной неравномерности распределения по фазам, номинальная мощность эквивалентной группы однофазных ЭП (при их числе менее четырех) принимается тройному значению номинальной мощности наиболее загруженной фазы

(5.39)

где - номинальная условная мощность трехфазной нагрузки группы однофазных ЭП, кВт; - номинальная мощность ЭП максимально загруженной фазы, кВт.

Расчет номинальных реактивных нагрузок производится аналогично. При расчете нагрузок все ЭП должны быть приведены к длительному режиму (ПВ=1).

При определении расчетных нагрузок применяются расчетные коэффициенты в зависимости от наличия исходной информации.

Остальные показатели расчетных нагрузок (Qр; Sp; и Ip) по данному методу определяются по аналогии с предыдущими методами расчета электрических нагрузок.

Вопрос №80

Контроль изоляции

Поддержание сопротивления изоляции на высоком уровне уменьшает вероятность замыканий на землю, на корпус и пораже­ний людей электрическим током. Контроль изоляции может быть приёмосдаточным, пери



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-04-30 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: