ТЕМА: Химический состав атмосферного воздуха и его гигиеническое значение. Углекислый газ и его гигиеническое значение. Методы определения.
Теоретические контрольные вопросы:
1. Атмосферный воздух, как фактор окружающей среды и его гигиеническое значение.
2. Естественный химический состав атмосферы, физиолого-гигиеническое значение его основных компонентов: азота, кислорода, углекислого газа, озона.
3. Природа атмосферных загрязнений, их источники и сравнительная гигиеническая характеристика.
4. Влияние атмосферных загрязнений на санитарно-бытовые условия жизни и экологию.
5. Влияние атмосферных загрязнений на здоровье населения (прямое и косвенное).
6. Гигиеническое значение предельно допустимой концентрацией химических веществ в воздухе.
7. Санитарно-химические исследования воздушной среды.
8. Санитарно-показательное значение углекислого газа.
9. Источники загрязнения атмосферного воздуха пылью.
10. Виды производственной пыли.
11. Физические и химические свойства пыли и их санитарно-гигиеническое значение: а) дисперсность и задержкапылевых частиц в органах дыхания; б) форма пылевых частиц; в) растворимость пыли; химический состав пыли.
12. Действие пыли на организм.
13. Мероприятия, проводимые по охране атмосферного воздуха в Российской Федерации.
Практические контрольные вопросы:
1. Определение углекислоты в воздухе помещений.
2. Определение кратности воздухообмена при естественной вентиляции помещений.
3. Аспирационно-весовой метод определения пыли.
4. Седиментационный метод определения запыленности воздуха.
5. Метод определения дисперсности пыли.
Цель занятия: Изучить основные химические компоненты и загрязнители атмосферного воздуха и научить студентов методикам определения диоксид углерода; расчета кратности воздухообмена при естественной вентиляции.
|
ОБЪЕМ САМОСТОЯТЕЛЬНОЙ РАБОТЫСТУДЕНТОВ:
1. Определить содержание углекислоты в помещении, указанном преподавателем.
2. Рассчитать необходимую кратность воздухообмена при естественной вентиляции в обследованном помещении.
3. Произвести отбор проб воздуха аспирационным методом.
4. Результаты выполненных исследований оформить протоколом по приведенной ниже форме с заключением и гигиеническими рекомендациями.
Часть теоретического и практического материала для подготовки к занятию.
ХИМИЧЕСКИЕ ФАКТОРЫВОЗДУШНОЙ СРЕДЫИ ИХ ВЛИЯНИЕ НА ОРГАНИЗМ ЧЕЛОВЕКА
Химические факторы воздушной среды подразделяются на естественные (природные) и искусственные. Последние обусловлены производственной и бытовой деятельностью человека. Естественный химический состав атмосферного воздуха характеризуется выраженным постоянством составных газовых компонентов. Совершенно иная картина наблюдается в отношении искусственных химических факторов воздушной среды. Они характеризуются чрезвычайно большим многообразием по составу и количество их постоянно увеличивается. Особенно усложнился химический состав атмосферных загрязнений воздушной среды бытовой и производственной деятельностью человека в условиях научно-технического прогресса. Широкая химизация всех отраслей народного хозяйства и быта человека с активной разработкой - синтезом новых химических веществ, материалов и внедрениемих во все сферы жизнедеятельности человека в значительной степени усложнили состав химического загрязнения всех факторов окружающей человека среды. Многочисленными исследованиями показано, что химические загрязнения атмосферного воздуха, воздушной среды бытовой и производственной деятельности человека, как и других факторов окружающей среды, оказывают неблагоприятное воздействие на санитарное состояние самих факторов окружающей среды, санитарно-бытовые условия жизни и здоровье человека. Вследствие этого изучение уровней химических загрязнений факторов окружающей среды, особенностей их воздействия на условия жизни и здоровье людей с разработкой и обоснованием целенаправленных санитарно-гигиенических оздоровительных мероприятий является неотъемлемой частью в работе врача.
|
Гигиеническая наука допускает поступление разнообразных химических веществ в окружающую человека природную, бытовую и производственную среду; не исключает поступления их и в организм человека. Однако количественно это поступление ограничено пределом, при котором вредные химические вещества индифферентны для организма человека и для окружающей его среды. В связи с этим возникло понятие предельно допустимой концентрации (ПДК). Основные принципы гигиенического нормирования вредных веществ в объектах окружающей среды впервые были разработаны и теоретически обоснованы отечественными учеными-гигиенистами.
Для гигиенической оценки состава и загрязненности атмосферного воздуха и воздуха в жилых помещениях, общественных, детских, лечебно-профилактических учреждениях используются гигиенические стандарты (ПДК) вредных химических веществ, разработанные для атмосферного воздуха, а при оценке воздушной среды производственных помещений - специально разработанные гигиенические стандарты (ПДК) вредных веществ в воздухе рабочей зоны. Данные гигиенические стандарты имеют ряд принципиальных различий, заложенных в основу их определений.
|
Так, впервые сформулированное профессором В.А.Рязановым определение гигиенического стандарта на атмосферные загрязнения преследует следующее:
Предельно допустимой концентрацией (ПДК) может быть признана такая концентрация химического вещества в атмосферном воздухе, которая при ежедневном непрерывном воздействии в течение длительного времени на организм человека не оказывает прямого или косвенного вредного или неблагоприятного воздействия, не снижает его работоспособности и настроения.
Для воздуха рабочей зоны, согласно ГОСТ 12.1.005-88 "Общие санитарно-гигиенические требования к воздуху рабочей зоны" дано следующее определение ПДК:
Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны - концентрации, которые при ежедневной (кроме выходных дней) работе в течение 8 ч. или другой продолжительности, но не более 41 ч в неделю, в течение всего рабочего стажа не могут вызывать заболеваний в состоянии здоровья, обнаруживаемых современными методами исследований, в процессе работы или в отдаленные сроки жизни настоящего и последующих поколений.
Предельно допустимые концентрации атмосферных загрязнений в РФ и странах СНГ устанавливаются в двух показателях: максимально разовые (за 20 мин) и среднесуточные (за 24 ч). Последние являются основными; их назначение - не допустить неблагоприятного влияния в результате непрерывного длительного резорбтивного действия. Максимально разовые ПДК устанавливаются в дополнение среднесуточным ПДК для веществ, обладающих запахом или раздражающим действием и способных вызвать острое отравление.
Для воздуха рабочей зоны разработанные ПДК вредных веществ в основном представляют максимально разовые концентрации. Исключением сказанному являются радиоактивные вещества, для которых помимо максимально разовых разработаны средние взвешенные во времени концентрации, т.е. с учетом воздействия в течение рабочего дня, рабочей недели, месяца и года.
Предельно допустимые концентрации, являясь государственным санитарным нормативом, широко используются в плане предупредительного надзора при проектировании, конструировании, выборе технологического процесса, при планировке и застройке населенных мест; при санитарной экспертизе токсичности полимерных продуктов, материалов, изделий; при выборе средств индивидуальной защиты и т.д. При осуществлении санитарного надзора ПДК используются и служат юридической основой при оценке загрязненности химическими веществами объектов окружающей природной (атмосферный воздух, вода, питьевые водоисточники, почва, продукты питания) и социальной (жилища, общественные здания, производственные помещения и др.) среды, а также при оценке эффективности оздоровительных мероприятий. Качественное и количественное определение химических веществ в объектах окружающей среды осуществляется с помощью широкого спектра современных химических и физических методов исследования с применением фотоэлектроколориметров, флюориметров, спектрографов, хроматографов и других приборов и аппаратов.
Санитарно-химические исследования воздушной среды проводятся с различными целями.
1. Определение изменения природного химического состава воздуха. Это имеет значение при оценке параметров обитаемости в экстремальных условиях (герметические сооружения, космические корабли) или в особых производственных условиях.
2. Изучение показателей "антропогенного" загрязнения воздушной среды. К ним относятся продукты жизнедеятельности людей - углекислота, аммиак и др. По их количественному уровню судят о степени чистоты воздуха в помещениях, где постоянно пребывают люди. Наличие в воздухе указанных веществ небезразлично для организма - все они приводят к поверхностному дыханию и уменьшению легочной вентиляции, головной боли, снижению окислительных процессов в организме.
3. Определение токсических примесей в воздухе, связанных с производственными, транспортными выбросами. При этом некоторые токсические вещества являются универсальными для всех категорий воздушной среды. Например, оксид углерода в воздухе производственных помещений является результатом выбросов при определенных технологических процессах. В атмосферный воздух она поступает за счет производственных выбросов и выхлопных газов автотранспорта. В жилых помещениях оксид углерода - продукт неполного сгорания бытового газа. Диоксид серы - частый загрязняющий компонент и в атмосферном фоздухе и в воздухе производственных помещений.
4. Определение токсических примесей в воздухе помещений при использовании строительных конструкций и элементов внутренней комплектации зданий из пластических масс и синтетических материалов. Высокомолекулярные соединения, входящие в состав композиций синтетических пластмасс - пленок, других материалов, обладают способностью при старении полимеров отдавать в воздух ряд токсических соединений - фенол, формальдегид, хлорид винила, стирол и др. Химическое исследование содержания этих соединений в воздухе помещений является одним из элементов гигиенической оценки воздушной среды в зданиях современного строительства. Гигиеническое исследование и оценка химических факторов требуют от врача знания методов отбора проб, выполнения санитарно-химических исследований, качественного и количественного лабораторного анализа проб и умения оценить результаты выполненных исследований по соответствующим гигиеническим нормативам.
ОПРЕДЕЛЕНИЕ ДОИКСИДА УГЛЕРОДА, КАК САНИТАРНЫЙ ПОКАЗАТЕЛЬ ЧИСТОТЫВОЗДУХА ЖИЛЫХ ПОМЕЩЕНИЙ И ОБЩЕСТВЕННЫХ ЗДАНИЙ
Диоксид углерода является составным ингредиентом атмосферного воздуха. Концентрация углекислого газа в атмосферном воздухе вне зоны загрязнения в среднем равняется 0,03% по объему или 0,046% по весу, что равно при нормальных условиях 591 мг/м3.
Повышение углекислого газа в воздухе ведет к раздражению дыхательного центра. Длительное вдыхание воздуха с повышенным содержанием (8-10%) углекислоты приводит к перераздражению дыхательного центра и смерти от паралича последнего. При 15% и выше CO2 в воздухе смерть наступает мгновенно от паралича дыхательного центра. Человек более чувствителен к избытку углекислого газа, чем животное. Уже при содержании С02 в воздухе в количестве 3% дыхание заметно ускоряется и углубляется; при 4% появляется ощущение сдавливания головы, головная боль, шум в ушах, психическое возбуждение, сердцебиение, замедление пульса и повышение давления, реже - рвота и обмороки.
Дальнейшее повышение уровня С02 до 8-10% сопровождается нарастанием выраженности всех симптомов и наступает смерть от паралича дыхательного центра. Опасность значительного накопления С02 в закрытых помещениях усугубляется тем, что она сопровождается одновременным уменьшением содержания кислорода в воздухе.
В ГИГИЕНИЧЕСКОМ ОТНОШЕНИИ ДИОКСИД УГЛЕРОДА ЯВЛЯЕТСЯ ВАЖНЫМ ПОКАЗАТЕЛЕМ, ПО КОТОРОМУ СУДЯТ О СТЕПЕНИ ЧИСТОТЫВОЗДУХА В ЖИЛЫХ И ОБЩЕСТВЕННЫХ ЗДАНИЯХ.
Углекислота выделяется при дыхании людей, и скопление больших количеств ее в воздухе закрытых помещений указывает на санитарное неблагополучие этого помещения (скученность людей, недостаточная вентиляция). В обычных условиях при недостаточной естественной вентиляции помещения и инфильтрации наружного воздуха через поры строительных материалов содержание диоксид углерода в воздухе жилых помещений может достигать 0,2 %. Пребывание в такой атмосфере приводит к ухудшению самочувствия и снижению работоспособности. Это объясняется тем, что параллельно с увеличением количества диоксида углерода в воздухе ухудшаются его свойства: повышается температура и влажность, появляются дурно пахнущие газы, представляющие собой продукты жизнедеятельности человека (меркаптан, индол, скатол, сероводород, аммиак), увеличивается содержание пыли и микроорганизмов. Происходит изменение ионизационного режима воздуха, увеличение тяжелых и уменьшение легких ионов. Однако из всех перечисленных выше показателей, связанных с ухудшением свойств воздуха диоксид углерода поддается наиболее простому определению, в силу чего она принимается за гигиенический показатель чистоты воздуха жилых и общественных зданий.
Допустимой концентрацией диоксида углерода воздуха считается 0,07-0,1%. Последняя величина принята в качестве расчетной при определении объема потребной вентиляции и эффективности вентиляции в жилых и общественных зданиях.
МЕТОДИКА ОПРЕДЕЛЕНИЯ ДИОКСИДА УГЛЕРОДА В ВОЗДУХЕ С ПОМОЩЬЮ ФОТОЭЛЕКТРОКОЛОРИМЕТРА
Принцип метода основан на измерении оптической плотности окрашенного поглотительного раствора (смесь бромтимолового синего и NaHCO3) после взаимодействия испытуемого воздуха с углекислотой. Чувствительность метода 0,025 об %.
Отбор пробы воздуха. Пробу воздуха для определения диоксида углерода отбирают в газовые пипетки емкостью 150-200 мл, предварительно заполненные 26 % раствором поваренной соли. При отборе пробы воздуха газовая пипетка находится в вертикальном положении. Вначале открывают верхний кран, а затем нижний. Вытекающий из пипетки раствор поваренной соли засасывает в нее исследуемый воздух. По окончании отбора пробы воздуха последнюю доставляют в лабораторию.
Ход работ. Из газовой пипетки исследуемый воздух в количестве 50 мл переводится солевым раствором в шприц емкостью 100 мл. Затем в шприц засасывают из бюретки 5 мл поглотительного раствора. После 2-х минутного взбалтывания исследуемого воздуха с поглотительным раствором жидкость помещают в кювету с толщиной слоя 10 мм и фотометрируют на приборе ЛМФ-69 при длине волны 600 нм (светофильтр N4). На градуировочном графике по оптической плотности раствора находят концентрацию диоксида углерода.
ОПРЕДЕЛЕНИЕ КРАТНОСТИ ВОЗДУХООБМЕНА ПРИ ЕСТЕСТВЕННОЙ ВЕНТИЛЯЦИИ
Естественный обмен воздуха в помещениях происходит через щели в окнах, дверях и поры строительных материалов (инфильтрация) вследствие разности температур, удельных весов наружного и комнатного воздуха и действия ветра на конструкции здания. Для усиления естественного воздухообмена в помещениях устраивают форточки, фрамуги, а в многоэтажных домах, кроме того, естественную вентиляцию в помещениях усиливают за счет внутристенных (вытяжных) каналов, выполненных при строительстве здания.
Для определения кратности воздухообмена в помещении при естественной вентиляции, необходимо учитывать кубатуру помещения, число людей и характер проводимой в нем работы. С использованием перечисленных выше данных кратность естественного воздухообмена можно рассчитать по следующим трем методам:
1. В жилых и общественных зданиях, где изменения качества воздуха происходят и зависимости от количества присутствующих людей и бытовых процессов, связанных с ними, расчет необходимого воздухообмена производят обычноподиоксиду углерода, выделяемой одним человеком. Для этого пользуются формулой:
где: Z - искомый объем воздуха в м /час на 1 человека;
К - количество литров углекислоты, выдыхаемой человеком в час.
Р - допустимое содержание углекислоты в воздухе жилых помещений в
промилле (1,0 %);
g - содержание углекислоты в наружном воздухе (0,4%).
Взрослый человек в обычных условиях при легкой физической работе выдыхает 22,6 л углекислоты в час. Подставляя указанные величины в формулу, получим:
Такое количество вентиляционного воздуха требуется вводить в' помещение на каждого человека в час, чтобы содержание С02, принятое за косвенный показатель чистоты комнатного воздуха, не превышал допустимой нормы 1 % (0,1 %). Исходя из нормы вентиляционного воздуха, устанавливают размеры воздушного куба, который в обычных жилых помещениях должен быть не менее 25 м3 при расчете на взрослого человека.
Основываясь на этом, определяют необходимую скорость воздуха в час, которую выражают кратным числом по отношению к кубатуре помещения. Например, в наших полученных цифрах 37,7: 25 = 1,5 т.е. необходимая вентиляция достигается при 1,5 кратном обмене воздуха в час.
В помещениях, где наблюдается значительное выделение тепла и влаги, расчет необходимого воздухообмена может быть произведен по теплу и влаге. Однако подобные определения обычно применяются только при расчетах воздухообмена для производственных помещений с различными источниками тепла и влагообразования, чтобы обеспечить удаление избыточного тепла и влаги. На производстве, где основными вредными выделениями являются газы и пыль, вентиляция рассчитывается на удаление этих веществ.
2. Косвенный метод основан на предварительном химическом определении содержания углекислоты в воздухе помещения и учета числа находящихсяв немлюдей.
Расчет кратности воздухообмена производят по формуле:
где: W - искомая кратность воздухообмена
К - количество литров С02, выдыхаемое человеком или другими источниками в час,
N - число людей или других источников С02, находящихся в помещении;
n - обнаруженная концентрация в промилле;
- среднее содержание С02 в атмосфере в промилле;
V - кубатура помещения в м 3.
Например: N - 10 чел., п - 1,5, V - 250 м3
Обычно за час происходит не более однократного обмена воздуха за счет инфильтрации, а поэтому при наличии большого воздухообмена можно сделать заключение о необходимости более тщательной пригонки оконных рам и т.д., чтобы устранить неблагоприятное действие токов проникающего воздуха в холодное время года.
3. Кратность воздухообмена при наличии вентиляции на естественной тяге (форточки, фрамуги) может быть определена путем учета объема воздуха, поступающего или удаляемого из помещения через форточки (фрамуги) в единицу времени. Для этого замеряют площадь просвета форточки (фрамуги) и скорость движения воздуха в проеме форточки. Скорость движения воздуха в проеме форточки замеряют крыльчатым анемометром и расчитывают по формуле:
где: а - площадь форточки (фрамуги), м2;
в - скорость движения воздуха в проеме форточки (фрамуги),м/сек;
с - время проветривания, с;
V - объем помещения, м3.
При делении полученного объема поступающего или удаляемого через форточку (фрамугу) воздуха расчет кратности воздухообмена в помещении определяют в час.
Пример. В палате кубатурой 60 м3, где находится 3 человека, проветривание происходит за счет форточки, которую открывают на 10 минут через каждый час. Скорость движения воздуха в проеме форточки - 1 м/с, площадь форточки - 0,15 м2
Дать оценку воздухообмена в палате.
Решение. За 1 с в палату поступает 1 х 0,15 = 0,15 м3; 10 мин - 90 м3.
Кратность воздухообмена равна: 90м3: 60м3 =1,5. Необходимый объем поступающего воздуха для3-х человек в данной палате за час должен быть:
а кратность воздухообмена при этом будет составлять 113:60 = 1,8 раза в час.
МЕТОДЫИССЛЕДОВАНИЯ И ГИГИЕНИЧЕСКАЯ ОЦЕНКА ЗАПЫЛЕННОСТИ ВОЗДУХА.
Пыль представляет собой совокупность частиц твердого вещества (пылинок), способных вследствие своих малых размеров находиться более или менее длительное время во взвешенном состоянии в воздухе. В атмосферном воздухе и воздухе помещений всегда содержится то или иное количество пыли,
В атмосферном воздухе предельно допустимое содержание (ПДК) нетоксичной пыли не должно превышать: в максимально разовых пробах 0,5 мг/м3, а в среднесуточных 0,15 мг/м3. Для жилых помещений допустимая норма не установлена, но надо полагать, что она не должна быть больше 0,15 мг/м3. В производственных условиях количество нетоксичной пыли в воздухе допускается до 10 мг/м3. Для токсической пыли (содержащей различные химические компоненты) специально разработаны и в условиях производства используются другие ее гигиенические стандарты.
Так, например, для пыли, содержащей 70% двуокиси кремния или смеси двуокиси кремния с окислами марганца, ее ПДК составляет 1 мг/м3; при содержании двуокиси кремния от 2 до 10 % ПДК пыли составляет 4 мг/ м3; пыль асбеста - 2 мг/м3; пыль стеклянного волокна - 3 мг/м3; пыль алюминиевых сплавов - 2 мг/м3; пыль глины огнеупорной - 6 мг/м3; фосфоритовая, цементная пыли - б мг/м3 и т.д. Пыль по своему происхождению может быть почвенной, бытовой и промышленной. По химическому составу различают пыль: минеральную (песчанная, известковая), органическую (древесная, мучная), металлическую (хром, свинец и др.). Присутствие больших количеств пыли в воздухе уменьшает солнечную радиацию, освещенность населенных мест, задерживает ультрафиолетовую часть спектра, что отрицательно влияет на самочувствие человека.
Для того, чтобы обосновать необходимость специальных мероприятий по борьбе с пылью на производстве, в атмосферном воздухе врач должен прежде всего провести исследование воздушной среды в обследуемых объектах на запыленность. При этом необходимо определить: количество пыли в воздухе и степень ее дисперсности. В отдельных случаях необходимо определить также химический состав пыли, морфологические особенности пылинок, удельный вес вещества в пыли. Количественная характеристика запыленности воздуха проводится путем определения количества (веса) пыли в единице объема воздуха (в мг/м3) или числа пылинок, находящихся в единице объема воздуха (1 см3). Соответственно с этим методы исследования запыленности воздуха принято делить на весовые и счетные.
В санитарно-гигиенической практике применяются аспирационные методы с определением объемно-весовых и счетных показателей, а также седиментационные методы в виде экранирования и применения счетчиков оседающей пыли. В настоящее время дополнительно применяется метод ультрамикроскопии пыли.
ОПРЕДЕЛЕНИЕ ЗАПЫЛЕННОСТИ ВОЗДУХА СЕДИМЕНТАЦИОННЫМ МЕТОДОМ
Этот метод используется для оценки степени запыленности атмосферного воздуха при изучении распространения аэрозольных загрязнений от промышленных предприятий и др. источников.
Оседающая из атмосферного воздуха пыль собирается в специальные цилиндрические емкости (банки) из стекла, пластмассы или фаянса высотой 25-30 см и диаметром 15-25 см.
Банки устанавливают с учетом "Розы ветров" и планировочных особенностей населенного пункта на различных расстояниях от источника загрязнения (0,5;1,5; 2,0 и более км) на высоте 3 м сроками на 15-30, а в некоторых случаях на 45-90 суток. Для получения более точных результатов, пункты наблюдения выбирают вдали от пыльных дорог, случайных источников загрязнения.
Для защиты сосудов от выдувания, банки помещают в фанерный ящик, открытый сверху, высотой 0,6-0,7 м.
Перед установкой банки промывают как химическую посуду, ополаскивают дистиллированной водой.
Для увлажнения в банку наливают 200 мл дистиллированной воды. В сухую погоду периодически добавляют воду.
Через определенный срок банки доставляют в лабораторию и подвергают осмотру, дается описание содержимого банки: цвет, запах и характер осадка, наличие посторонних загрязнений и предметов. Посторонние предметы извлекают, промывают над банкой дистиллированной водой и выбрасывают. Затем содержимое банок переносят в химические стаканы. Банки несколько раз ополаскивают дистиллированной водой до тех пор пока весь остаток не смоется. Воду сливают в те же стаканы. Стаканы оставяют в покое до следующего дня, чтобы все нерастворимые частицы осели. Затем определяют площадь пылеулавливающего отверстия банки по формуле:
S=ПR2
Отстоявшуюся жидкость фильтруют через высушенные до постоянного веса фильтры, осадок также переводят на эти фильтры путем ополаскивания стаканов профильтрованной жидкостью.
После этого фильтры просушивают на воронках в сушильном шкафу при температуре 105о. Подсушенный на воронке фильтр переносят в бюкс, в котором он высушивался до фильтрации и высушивают в сушильном шкафу до постоянного веса при температуре 105о С.
Количество нерастворимых веществ в г/м2 вычисляют по формуле:
где А - количество осевших веществ (нерастворимых) в г/м 2;
б - вес бюкса с фильтром (в г)
а - вес юбкса с высушенным на фильтре осадком ( в г)
S - площадь банки в (м2)
Затем рассчитываются количество осевших аэрозолей в граммах на м2 за сутки или в тоннах на 1 км2 за месяц, квартал или год. А фильтрат используют для определения растворимых в воде веществ (смол, минеральных, органических веществ и т.д.).