ГЛАВА 2. МЕТОДЫ ИЗМЕРЕНИЯ ДЕФОРМАЦИЙ




 

При строительстве подземных сооружений, в процессе разработки породы развивается сильное горное давление, под действием которого деформируются крепления и уже построенные сооружения, как с бетонной, так и с тюбинговой обделкой.

В зависимости от гидрогеологических условий, горное давление действует в различных направлениях, и, в связи с этим, возникают различные деформации: осадка креплении при проходке штолен и разработке калотт; осадка сводов готовых сооружений; сближение стен готовых сооружений; выпучивание лежанов рам, лотков и обратных сводов. В малоустойчивых породах горное давление бывает настолько большим, что разрушаются уже сооруженные конструкции.

Указанные обстоятельства требуют тщательных наблюдений за деформацией подземных конструкций на всех стадиях строительства, согласно с методами исследования деформаций сооружений. Особенно тщательно надлежит наблюдать за деформацией колец на станциях при сооружении параллельных тоннелей и при раскрытии проемов. В этих случаях наблюдения по описанной выше программе рекомендуется производить не реже чем через каждые три дня.

Особое внимание в главе уделено особенностям ориентирования подземных геодезических сетей методом двух шахт. При реализации данного метода на поверхности определяют координаты двух пунктов сети и с помощью двух отвесов или приборов оптического вертикального проектирования их координаты передают в тоннель и закрепляют постоянными геодезическими знаками. Между двумя знаками с известными координатами прокладывают подземный полигонометрический ход. Отличительной особенностью подземного полигонометрического хода является то, что в нем отсутствуют линии с известным дирекционным углом. Решение такой задачи следует начинать с задания любого значения дирекционного угла одной из сторон полигонометрического хода, например, дирекционного угла стороны S1 (линия А – 1) = 0. Используя координаты пункта А и выбранного дирекционного угла , вычисляются координаты всех пунктов полигонометрического хода, включая и координаты второго опорного пункта В. Результаты расчета иллюстрируются на рис.1.

 
 

Используя координаты пункта и полученные координаты пункта В', вычисляется угол разворота φ полигонометрического хода между пунктами В и В' относительно пункта А, и определяется исправленное значение дирекционного угла первой стороны хода:

. (1)

Получив исправленное значение дирекционного угла (1), вычислим координаты пунктов полигонометрического хода. При этом координаты конечной точки хода В" будут находиться на прямой АВ (рис.1). Величина невязки хода ВВ" для вытянутого полигонометрического хода будет определяться в основном ошибками измерения длин линий хода и является исходной величиной для уравнивания хода. Контролем правильности вычислений в таком случае будет являться отсутствие поперечной невязки хода.

Получив невязки координат полигонометрического хода δx и δy (рис.1), можно вычислить продольный t и поперечный u сдвиги хода:

; ,

где - длина полигонометрического хода.

Оценка точности вычисления дирекционных углов подземного полигонометрического хода производится для вытянутого полигонометрического хода вдоль оси ординат при равных длинах сторон S. Ошибка угла разворота угла φ будет определяться величиной поперечного сдвига вытянутого хода и линейном виде будет равна:

,(2)

где n – число сторон в вытянутом полигонометрическом ходе; Δβi – истинные ошибки измерения углов поворота хода.

Ошибка угла разворота хода φ равна:

. (3)

В таком случае ошибка дирекционного угла полигонометрического хода, учитывая, что поправка в угол вводится со знаком, обратным поперечному сдвигу, равна:

С учетом (3) получаем:

. (4)

Переходя от истинных ошибок измерения к средним квадратическим, для равноточно измеренных углов хода, произведя суммирование (4), имеем:

.

На рис.2 показан характер изменения ошибки дирекционного угла вытянутого полигонометрического хода при количестве сторон 6, 8 и 10. Общей и необычной характеристикой полигонометрического хода, не имеющего примычных углов, является то, что наиболее точно определяется дирекционный угол в середине хода. На рис.2 приведены графики коэффициента k:

, где .

 
 

Второй отличительной особенностью полигонометрического хода, опирающегося только на два пункта с известными координатами, заключается в том, что при небрежном выполнении расчетов нельзя исключать ситуации, при которой могут быть вычислены координаты "зеркального" полигонометричес-кого хода. Избежать подобной ошибки поможет вычисление левых или правых углов поворота полигонометрического хода и сравнение их с измеренными.

Средняя квадратическая ошибка определения дирекционного угла в середине подземного полигонометрического хода, обусловленная ошибками угловых измерений, практически равна средней квадратической ошибке измерения углов. При количестве сторон в подземном полигонометрическом ходе не более 10, и средней квадратической ошибке измерения угла 2-3", основной ошибкой может стать ошибка передачи координат в тоннель. В диссертации выполнен подробный анализ точности определения координат пунктов подземной полигонометрической сети.

Выполненный анализ точности показывает, что подземный полигонометрический ход, опирающийся на два пункта, вполне может обеспечить точность, необходимую для наблюдения за изменением положения тоннеля. Основным недостатком данного метода является слабый контроль возможных промахов при выполнении работ.

В таких условиях геодезические работы необходимо выполнять особенно тщательно, обеспечив повторные измерения, для надлежащего контроля.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-08-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: