ГЛАВА 3. АНАЛИЗ ДЕФОРМАЦИЙ КОЛЕЦ ТОННЕЛЯ




 

Внедрение в геодезию современных средств измерений привело к появлению новых задач. Такой задачей является обработка спутниковых результатов измерений, когда встает вопрос об учете ошибок исходных данных. Если использовать основную формулу метода наименьших квадратов в традиционной записи:

,(5)

то возникает новая проблема: как вычислить веса параметров уравнений Кеплера и поправочных коэффициентов?

Для этой задачи сформулирована новая целевая функция: минимум суммы квадратов остаточного рассогласования преобразованных координат и координат государственной или местной системы координат. Формулировка целевой функции отличается от целевой функции, предложенной Гауссом при разработке метода наименьших квадратов. При использовании новой целевой функции можно достичь желаемого результата и вычислить параметры преобразования, но при этом возникают две очень сложные проблемы:

· как вычислить веса величин, используемых в обработке;

· как выполнять оценку точности параметров преобразования и преобразованных координат, так как Гаусс разработал метод оценки точности для другой целевой функции.

К этому же классу задач относится и методика анализа деформаций колец тоннеля. Современные алгоритмы обработки результатов измерений предусматривают вычисление положения вероятнейшей окружности под условием минимума суммы квадратов расхождений реального положения колец тоннеля от вероятнейшего. Новая целевая функция не позволяет использовать при обработке результатов измерений все точностные характеристики измеренных и приближенно известных величин и выполнить объективную оценку как результатов измерений, так и их функций.

С развитием дальномерной техники в геодезии стали широко применять полигонометрию и линейно-угловые сети. При уравнивании таких сетей возникли трудности: как вычислять веса для угловых и линейных измерений? Вес – величина размерная или безразмерная? Этот вопрос станет понятен, если целевую функцию (5) записать в виде:

,(6)

где – веса угловых измерений; – поправки в угловые измерения; – веса линейных измерений; – поправки в линейные измерения.

Если вес – величина безразмерная, то в целевой функции (6) будут складываться, например, квадратные секунды с квадратными миллиметрами. В результате остро стоит вопрос о соотношении весов в угловых и линейных измерениях. Для того чтобы устранить возникшую парадоксальную ситуацию, можно записать формулу (6) в следующем виде:

. (7)

Средняя квадратическая ошибка единицы веса μ2, стоящая перед знаком суммы, не влияет на отыскание минимума, следовательно, целевую функцию (7) можно представить в окончательном виде:

. (8)

По сути, эта та же формула Гаусса, лишь записана она в другом виде. Однако такая форма записи снимает все трудности поиска соотношения весов между разнородными измерениями, так как под знаком суммы стоят безразмерные коэффициенты, если средние квадратические ошибки и поправки вычислены в единой размерности. Более того, целевая функция (8) позволяет вычислять поправки в любые величины, которые измерены или известны приближенно при совместной их обработке. В целевой функции (8) роль веса выполняет величина, обратная квадрату средней квадратической ошибки, что и рекомендовал Гаусс. Вводить в эту целевую функцию понятие веса бессмысленно, так как при обработке результатов измерений это ничего нового не прибавит и не убавит.

Аналогичная ситуация сложилась и при анализе результатов наблюдений за деформациями колец туннеля. По результатам угловых и линейных измерений вычисляют координаты нескольких точек по периметру тоннеля в условной системе координат, а затем вычисляют положение аппроксимирующей окружности под условием:

, (9)

где Δi – отклонение радиуса аппроксимирующей окружности от реального расстояния от оси тоннеля до обделки.

Целевая функция (9) позволяет вычислить интересующие параметры тоннеля, но не допускает учета точностных характеристик измеренных величин, и невозможно воспользоваться алгоритмом Гаусса для оценки точности вычисленных параметров тоннеля. К сожалению, целевая функция (9) нашла неоправданно широкое применение при решении инженерно-геодезических задач, несмотря на ее откровенные недостатки. Автором разработана методика обработки результатов измерений при наблюдениях за деформациями колец тоннеля с использованием целевой функции (8) при сохранении возможности выполнения оценки точности всех вычисляемых параметров тоннеля.

Обычно метод решения задачи в геодезии состоит из самостоятельных этапов.

Этап 1. Формулировка основной цели работы.

Выполнить анализ деформаций колец тоннеля c заданной средней квадратической ошибкой 3 мм. Под термином "деформация колец тоннеля" может подразумеваться: отклонение размеров тоннеля от проектного; отклонение размеров тоннеля от вероятнейшей окружности.

При анализе отклонений размеров тоннеля от проектного значения все проектные размеры при обработке входят как константы, и к ним не требуется вычислять поправки. В зависимости от поставленной задачи могут встречаться оба варианта анализа деформаций. В большинстве случаев в инженерно-геодезической практике задается несколько точностных характеристик, например, допуск на радиус тоннеля и допуск на отклонение от вероятнейшего радиуса тоннеля. В таком случае целесообразнее вычислять действительный размер собранного тоннеля. В дальнейшем примере будем рассматривать именно этот вариант, как наиболее характерный.

Этап 2. Выбор метода измерений, который решает поставленную задачу.

Одновременно с выбором метода измерений необходимо записать математические зависимости между измеряемыми и вычисляемыми величинами (в данном случае деформационные характеристики колец тоннеля). Строгая математическая зависимость между измеряемыми и вычисляемыми величинами полностью исключает дальнейший выбор каких-либо иных "независимых параметров". В том случае, если измеряемые и вычисляемые величины связаны нелинейными уравнениями, то приведение данной функции к линейному виду возможно лишь в том случае, если удастся найти приближенные значения именно вычисляемых величин, и в таком случае нет места другим "независимым параметрам".

Этап 3. Предварительная оценка точности с использованием метода наименьших квадратов, по результатам оценки точности выбор метода измерений, а также обоснование точности полевых измерений.

Этап 4. Полевые измерения.

Этап 5. Обработка результатов полевых измерений, вычисление уравненных значений искомых величин с оценкой их точности.

Процесс измерения заключается в следующем. В некоторой точке А устанавливают инструмент и измеряют углы наклона βi, и расстояние Si до стенок тоннеля в нескольких точках, расположенных в вертикальной плоскости, перпендикулярной оси тоннеля. Зная проектные размеры тоннеля и выполнив дополнительные измерения можно определить приближенные координаты оси тоннеля относительно оси теодолита (рис.3) со средней квадратической ошибкой 3 - 4 см.

Используя полярные координаты Si и βi и их точностные характеристики, необходимо вычислить положение оси тоннеля, радиус тоннеля и деформационные характеристики тоннеля с объективной оценкой точности. Как видно из рис.4, уравнения, которые связывают измерения и интересующие нас величины, имеют вид:

,(10)

гдеR – радиус тоннеля; Δi – отклонение фактического положения стенок тоннеля от окружности; Si - расстояние от прибора до наблюдаемой точки; X – расстояние от прибора до центра тоннеля по оси Х; Y – расстояние от центра тоннеля до горизонтальной оси прибора по оси Y; φi – угол между направлением на центр тоннеля и наблюдаемой точкой. Учитывая, что

; (11)

,(12)

где α – угол между горизонтом инструмента и направлением на центр тоннеля;

, если ,(13)

где βi – измеренный угол между горизонтом инструмента и визирным лучом на точку I и , если . (14)

При этом необходимо выбрать знак координат X и Y. В дальнейшем будем считать величину Y положительной, если центр прибора расположен ниже оси тоннеля, X – величиной положительной, если центр прибора расположен слева от оси тоннеля, как показано на рис.3.

Уравнению (10) будут удовлетворять лишь уравненные значения, причем измеренные или приближенно известные величины (далее выделены их волнистой чертой сверху) и уравненные связаны следующими равенствами:

.

С учетом этих представлений приведем уравнение (10) к линейному виду относительно поправок в измеренные величины, но в начале определим зависимость между поправками в βi и φi. С учетом (12) из уравнений (13) и (14) получим:

, если ; (15)

, если . (16)

В свою очередь, поправку Vγ получим из уравнения (11), представив его в виде:

,(17)

где . (18)


Следовательно,

при α > βi,(19)

при α < βi. (20)

Запишем уравнение (10) через измеренные значения и поправки к ним:

(21)

Разложим уравнение (21) в ряд Тейлора и, полагая, что искомые поправки достаточно малы, ограничиваясь первыми членами разложения, с учетом (19) и (20) при α > βi получим:

(22)

а при α < βi:

(23)

Введем обозначения: при α > βi:

при α < βi:

остальные коэффициенты остаются без изменений.

С учетом принятых обозначений условные уравнения примут вид:

. (24)

Таблица 1
№ п/п βi Si, см φi
  0º00'00" 188,5 159º56'38"
  30º00'00" 209,7 129º56'38"
  60º00'00" 234,7 99º56'38"
  90º00'00" 266,0 69º56'38"
  120º00'00" 302,8 39º56'38"
  150º00'00" 323,8 90º56'38"
  180º00'00" 318,0 20º03'22"

 

Измеренные значения углов βi и расстояний от дальномера до стенок тоннеля Si, представлены в табл.1.

Зная проектное значение радиуса тоннеля R = 255 см, высоту пола h1 и высоту инструмента h2, можно вычислить приближенное значение величины

: .

В нашем случае h1 + h2 = 232 см, следовательно, = 23 см. В соответствии с ранее принятым расположением осей координат, величину вычислим по горизонтальным расстояниям S1 и S7:

. (25)

Из табл.1 находим, что S1=188,5 см, S7=318,0 см, следовательно,

=64,8 см.

По приближенным координатам оси инструмента вычисляется угол :

и углы .

Затем вычисляются коэффициенты аij. по приведенному выше алгоритму.

Известно, что деформации колец тоннеля – величины сравнительно малые, и в первом приближении примем со средней квадратической ошибкой 3 – 4 см. На примере расчета далее показано, что такой подход позволяет вычислить необходимые деформационные характеристики, однако у него имеются и некоторые недостатки. При уравнивании результатов измерений подобных схем измерений под условием (8), поправки к приближенным отклонениям фактического положения стенок тоннеля от окружности, по сути, являются собственно отклонениями, так как принято, что . Далее рассмотрен иной подход к обработке результатов измерений.

По приближенным координатам оси инструмента вычислим угол

: и углы , которые отражены в табл.1 (φi).

Найдем невязки li по формуле:

и затем представим их в виде матрицы L.

Составим матрицу обратных весов, используя средние квадратические ошибки, , где элементами симметричной диагональной матрицы М размером 24×24 являются следующие средние квадратические ошибки: mx,y = 3 см, mΔ= 3 см, mS = 0,3 см, mβ = 20", mR = 3 см.

Вектор коррелат рассчитывается по формуле:

.

Вектор поправок найдем по формуле: .

Известно, что деформации колец тоннеля – величины сравнительно малые, и в первом приближении примем Δi = 0 со средней квадратической ошибкой 3 – 4 мм. Получив поправки V, можно найти фактическое положение стенок и радиуса тоннеля, по формулам (15). В итоге получен вектор поправок Vi (поправки в линейные величины выражены в сантиметрах, а в угловые – в секундах). После определения поправок в измеренные величины, найдено фактическое положение стенок и радиус тоннеля по формуле (15). (Численные значения в автореферате не приводятся).

Выполненный анализ точности результатов уравнивания показал, что величины деформаций колец тоннеля получены со средней квадратической ошибкой 3 мм, а координаты реального положения оси тоннеля – со средней квадратической ошибкой 1,9 мм, как и величина вероятнейшего радиуса.

Далее в диссертации разработан второй метод определения деформаций стенок тоннеля с одновременным вычислением вероятнейшей окружности. В данном методе рассмотрены результаты измерений полярных координат (углов и расстояний) с одной стоянки электронного тахеометра. В данном случае целесообразно представить функцию (10) в следующем виде:

. (26)

Равенство (26) будет удовлетворено лишь в случае, если все величины будут уравнены.

Измеренные величины представим в виде:

где волнистой чертой сверху отмечены измеренные, либо приближенно известные величины.

Величины деформаций в первом приближении известны , как величины малые, следовательно, поправки к ним будут собственно смещениями наблюдаемых точек от вероятнейшей кривой: .

Представим величины, характеризующие положение вероятнейшей окружности, в виде

где величины являются дополнительными неизвестными. В таком случае уравнение (26) имеет вид:

(27)

Полагая, что поправки к измеренным величинам и дополнительным неизвестным – величины малые, воспользуемся разложением в ряд Тейлора и приведем нелинейное уравнение (27) к линейному виду и введем обозначения:

(28)

где ; .

Введем обозначения:

С учетом принятых обозначений уравнение (28) представим в виде условных уравнений

,(29)

где невязки .

С учетом (19) и (20) уравнение (29) можно представить в виде:

,(30)

где при

:

а при :

Используя условные уравнения (30), составим первую целевую функцию метода наименьших квадратов:

. (31)

После дифференцирования из полученных производных сформируем уравнения поправок: . (32)

С учетом поправок, выраженных через коррелаты (32), условные уравнения (30) предстанут в виде:

. (33)

Для определения параметров вероятнейшей окружности из уравнения (33) сформируем вторую целевую функцию, преобразовав величину свободного члена li:

,(34)

где ,

откуда определим, при каких значениях и функция (34) будет иметь минимум

откуда получим:

(35)

С учетом поправок в измеренные величины, выраженных через коррелаты (32), и перегруппировки членов уравнений, окончательно получим:

(36)

Система уравнений (36) решается совместно с системой уравнений (33). Объединенную систему уравнений можно представить в виде:

где

По сути, этот метод является коррелатным методом с дополнительными неизвестными. Основное отличие его заключается лишь в том, что на значения дополнительных неизвестных наложено новое условие

.

По данной методике был обработан ранее приведенный пример. Оценка точности практически не изменилась, а поправки в измеренные стороны уменьшились, а величина выявленных деформаций увеличилась в среднем на 2 мм. Основное преимущество разработанного метода заключается в том, что для выполнения математической обработки результатов измерений используется стандартный алгоритм коррелатного метода с дополнительными неизвестными.


ЗАКЛЮЧЕНИЕ

 

Развитие городского транспорта в Тегеране ведется активными темпами. К настоящему времени уже активно эксплуатируются линии современного метро, и в ближайшем будущем сеть метрополитена Тегерана будет существенно развита. Учитывая, что геологические условия в зоне строительства тоннелей являются сложными, проблема наблюдений за деформациями обделок тоннелей является важной и актуальной задачей.

Надежное определение положения колец тоннеля возможно лишь при высокоточных методах передачи координат и дирекционных углов в подземные геодезические сети. В связи с этим в диссертации автором разработана эффективная методика ориентирования сторон подземной полигонометрии методом двух шахт. При этом через стволы шахт передаются только координаты. При этом исключается трудоемкая операция передачи дирекционного угла к сторонам подземной полигонометрии. В диссертации выполнен подробный анализ точности как дирекционных углов, так и координат пунктов, который убедительно показал, что усовершенствованная методика ориентирования подземных геодезических сетей обеспечивает точность, необходимую как для строительства тоннелей, так и для изучения деформаций стен тоннелей.

Современные средства геодезических измерений, а именно, электронные тахеометры, позволяют выполнять высокоточные измерений в безотражательном режиме с точностью вполне удовлетворяющей точностным требованиям к определению деформаций колец тоннеля (2 – 5 мм). В связи с этим автором диссертации была поставлена научная задача: разработать математический аппарат эффективной разработки результатов измерений с возможностью объективной оценки точности результатов измерений. Автором составлена математическая модель, связывающая результаты измерений с деформационными характеристиками стенок тоннелей:

,

гдеX, Y – координаты центра тоннеля относительно точки стояния инструмента;

R – вероятнейший радиус тоннеля.

Учитывая, что определяемых неизвестных всего три, а результатов измерений значительно больше, появляется возможность использования метода наименьших квадратов для получения наиболее надежных значений искомых величин.

В диссертации рассмотрены два метода решения поставленной задачи. В первом случае удалось так преобразовать математическую модель формы тоннеля, что уравнивание и оценка точности свелись к коррелатному методу уравнивания. Для того чтобы более строго зафиксировать положение вероятнейшей окружности, уравнивание результатов измерений выполняется под двумя условиями:

– минимум суммы квадратов поправок в измеренные величины с учетом средних квадратических ошибок измерений и

минимум суммы квадратов уклонений наблюдаемых точек стенок тоннеля от вероятнейшей окружности. Как показали результаты практических расчетов, повышение точности измеряемых величин не является существенным, но это позволило ввести в обработку точностные характеристики измеренных величин и осуществить оценку точности искомых параметров, используя коррелатный метод с дополнительными неизвестными.

Разработанная методика обработки результатов измерений будет применена при анализе деформаций тоннелей метрополитена в Тегеране.

 


Публикации по теме диссертации:

 

1. Власенко Е.П., Хамид Фармарз Пур. Особенности ориентирования подземных геодезических сетей методом двух шахт. Изв. вузов. "Геодезия и аэрофотосъемка", № 1, 2007.

2. Клюшин Е.Б., Шлапак В.В., Власенко Е.П., Хамид Фармарз Пур. О некоторых особенностях обработки результатов измерений при решении современных геодезических задач. Материалы международной научно-технической конференции, посвященной 225-летию МИИГАиК. М., 2004.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-08-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: